引起疟疾的疟原虫通过传染性按蚊叮咬传播。有关寄生虫传播方式的详细信息,请参阅附录 A:疟疾生命周期。五种疟原虫可导致人类患病:恶性疟原虫、间日疟原虫、卵形疟原虫、三日疟原虫和诺氏疟原虫。由于疟疾在 20 世纪 50 年代初在美国被消灭,因此人们认为美国居民对疟疾没有免疫力,容易患上重病甚至死亡。在美国,每年约有 2,000 人被诊断出患有疟疾,其中大多数人是在存在持续蚊媒传播(输入性疟疾)的国家感染疟疾的。由于可传播疟疾的按蚊遍布大多数州,因此在美国境内,疟疾有可能从输入病例传播给非旅行者(但很少见)。
摘要 疟原虫通过系统地改变暴露在受感染红细胞表面的抗原来避免免疫清除。这是通过对大型多拷贝基因家族 var 的个体成员进行严格调控的转录控制来实现的,这是疟疾感染的毒性和慢性性质的关键。var 基因的表达是相互排斥的,并受表观遗传控制,然而,大量寄生虫如何协调 var 基因转换以避免抗原库过早暴露尚不清楚。在这里,我们为一个转录网络提供了证据,该网络由一个普遍保守的基因 var2csa 锚定,该基因协调转换过程。我们描述了一种结构化的转换偏差,它会随着时间的推移而发生变化,并可能在长期感染过程中塑造 var 表达的模式。我们的研究结果解释了疟疾感染的一个以前神秘的方面,并揭示了拥有相对较少的变异抗原编码基因库的寄生虫如何协调转换事件以限制抗原暴露,从而维持慢性感染。
由疟原虫引起的临床疟疾造成了世界各地数百万人的死亡和苦难。虽然人类在肝脏最初发育过程中已知人类对疟原虫的防护性免疫反应持续,但我们对此过程的机制知之甚少。这个知识差距阻碍了我们开发自然免疫反应对疟疾的能力。我们表明,宿主肝细胞中存在的AIM2受体检测到疟原虫的DNA分子,从而导致caspase-1的非常规加工和炎性途径的激活。这会导致肝细胞的编程细胞死亡,该细胞含有疟原虫和对肝脏本身感染的早期控制,可能会限制临床疟疾。
许多病原体,包括疟原虫,都会产生专门的生命阶段,用于在宿主体内繁殖和向外传播。能够加快繁殖速度的特性(包括对传播阶段的有限投入)应该会使宿主健康面临更大的风险(在其他条件相同的情况下)。然而,尚不清楚为什么寄生虫没有进化出更快的繁殖速度,因为疟原虫似乎并不遵循传统预测会限制寄生虫进化的传播速度和持续时间之间的权衡。为了解决这个难题,我们引入了一个感染年龄结构的宿主内数学模型,该模型结合了动态免疫清除,以研究潜在的权衡并了解寄生虫如何优化其传播投资。当投资在所有感染年龄中保持不变时,增加传播投资会减少感染持续时间和寄生虫适应度,最佳投资发生在相对较低的值(约 5%),远低于从缺乏寄生虫投资和免疫清除之间动态反馈的模型中恢复的最佳值。对于年龄变化策略,我们的模型表明,疟原虫可以通过延迟传播投资来提高其适应性,从而最初在宿主内更快地繁殖。我们的结果表明,适应性免疫可以施加生存-繁殖权衡,这解释了为什么疟原虫无法在宿主内更快地进化。我们的理论框架为理解传播投资策略如何改变疟疾感染生命周期内的传染时间提供了基础,这对寄生虫响应控制努力的进化具有影响。
全球恶性疟原虫(最致命的疟疾寄生虫,也是非洲大陆最流行的疟疾寄生虫)印度尼西亚恶性疟原虫、间日疟原虫(撒哈拉以南非洲以外大多数国家的主要疟疾寄生虫)和诺氏疟原虫 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report- 2023
摘要 疟疾是一种毁灭性疾病,导致全球发病率和死亡率显著上升。青蒿素类联合疗法是治疗疟疾的一线疗法,但随着这种疗法的耐药性不断上升,开发具有新作用机制的替代抗疟药的必要性也日益凸显。抑制疟原虫蛋白激酶为药物开发提供了一个尚未得到充分探索的机会。PfPK6 已被确定为恶性疟原虫无性血液阶段增殖的必需激酶,但尚未开展药物化学研究以开发抑制剂。在这项研究中,我们报告了利用分裂荧光素酶三杂交技术,使用 KinaseSeeker 检测法确定 Ki8751 是一种 PfPK6 抑制剂(IC 50 = 14 nM)。设计、合成了一系列 79 种 Ki8751 的 1-苯基-3-(4-(喹啉-4-基氧)苯基)脲衍生物,并评估了它们对 PfPK6 的抑制作用和抗疟原虫活性。通过基团效率分析,我们确定了支架上关键基团对抑制 PfPK6 的重要性,这与 II 型抑制剂药效团一致。我们重点介绍了有助于抗疟原虫活性的尾部基团修饰。我们报告了化合物 67 的发现,它是一种有效的 PfPK6 抑制剂(IC 50 = 13 nM),对恶性疟原虫血液阶段(EC 50 = 160 nM)有效,化合物 79 是一种优秀的 PfPK6 抑制剂(IC 50 < 5 nM),对恶性疟原虫血液阶段(EC 50 = 39 nM)和伯氏疟原虫肝脏阶段(EC 50 = 220 nM)具有双阶段抗疟活性。这些结果为将该化学型进一步开发为新型抗疟药和针对 PfPK6 的化学探针奠定了基础,从而可以进一步研究 PfPK6 的功能。
对疟疾控制的遗传修饰蚊(GM)方法的生态可行性的怀疑态度得到了支持。然而,考虑到不感染的可能的适应性优势也需要评估转基因蚊子的净适应性时,将其引入自然种群中。因此,了解Ma-raLia寄生虫是否对其向量有毒,如果是的,那么对于预测GM方法的成功而言,直接相关。在这里,我们总结了疟疾寄生虫对其蚊子的所有已知的破坏作用,并讨论了它们对自然界中疟疾 - 难治基因的引入的影响。除了div>我们审查了转基因产生醒目的作用方式,并推测疟原虫对这种杀戮机制的进化反应。最后,讨论了当前候选GM表型,BORH对蚊子和Hurnans的毒力意义。
由各种疟疾寄生虫菌株(如恶性疟原虫,疟原虫,卵子,卵子疟原虫,疟原虫,疟原虫疟疾和疟原虫诺氏疟原虫)引起的疟疾是对全球人类健康的主要威胁。据估计,大约33亿人有患这种疾病的风险[1]。对人类微生物组的最新研究表明,居民微生物群落与血液寄生虫的风险之间存在联系,从而提供了基于微生物疾病治疗的潜力,例如益生菌[2]。免疫反应在疟疾的病理生理学中起着至关重要的作用。虽然氯喹曾经是治疗恶性疟原虫疟疾的首选药物,但该物种的抗药性的出现使其效果降低[1]。益生菌是微生物,可为消费者提供健康益处。它们通常是革兰氏阳性细菌,主要是从肠道菌群中分离出来的,并且已知可以增强宿主中的免疫反应。益生菌针对各种病原体具有菌株特异性的有效性,并可以调节肠道微生物,从而影响免疫细胞和Peyer的斑块细胞[1]。通过与这些细胞相互作用,益生菌可以刺激IgA和IgM等抗体的产生,从而导致免疫反应的总体增强。鉴于这些特性,含有有益微生物和潜在益生菌的发酵食品可能是增强免疫反应和降低疟疾严重程度的有前途的途径。