摘要:迫切需要新药物来预防和治疗疟疾。大多数抗疟药发现依赖于表型筛查。但是,随着改进的目标验证策略的发展,现在正在利用以目标为中心的方法。在这里,我们描述了工具包的开发,以支持有希望的靶靶标,赖氨酸TRNA合成酶(PF KRS)的治疗性开发。该工具包包括抗性突变体,以探测抗性机制和针对特定化学型的靶向参与;一种能够产生适合配体浸泡的晶体的杂种KRS蛋白,从而提供高分辨率的结构信息以指导化合物优化;化学探针促进旨在揭示各种特定相互作用蛋白质和热蛋白质组谱分析(TPP)(TPP)的下拉研究;以及简化的等温TPP方法,可在生物学相关的环境中无公正地确认靶向靶向。这种工具和方法的组合充当开发未来目标软件包的模板。关键字:疟原虫,赖氨酸TRNA合成酶,热蛋白质组分析(TPP),等温TPP,化学下拉,抗疟药
• Poostchi Mahdieh 等人,使用薄血涂片显微镜对人类和小鼠进行疟原虫检测和细胞计数,医学影像杂志 5,第 4 期 (2018):044506。• Feng Yang 等人,级联 YOLO:在薄血涂片中自动检测间日疟原虫,将于 2020 年 2 月 18 日至 20 日在美国休斯顿的 SPIE 医学影像大会上发表。
抽象的亲脂蛋白是一种必不可少的,高度表达的脂质转运蛋白,分泌并在昆虫血淋巴中循环。我们劫持了肛门coluzzii脂肪素基因,使其共表达了抗体2A10的单链版本,该版本结合了疟原虫疟原虫恶性疟原虫的孢子岩。所产生的转基因蚊子表明,将表达恶性疟原虫的berghei传输的能力明显降低,向小鼠表达了恶性疟原虫的p. p. p. p. purciparum purciparum purciparum purcorozoite蛋白。为了迫使这种抗菌转基因在蚊子种群中的传播,我们设计并测试了几种基于CRISPR/CAS9的基因驱动器。其中之一安装在促寄生虫基因saglin中,并裂解野生型脂素蛋白,从而导致抗癌化的修饰的脂蛋白版本与Saglin Drive一起替换野生型和搭便车。尽管产生了抗驱动器等位基因并在其GRNA编码的多重阵列中显示不稳定,但基于Saglin的基因驱动器在笼中的蚊子种群中达到了高水平,并有效地促进了抗菌性脂蛋白:: sc2a10等位基因的同时扩散。这种组合有望通过两种不同的机制减少寄生虫的传播。这项工作有助于设计新型策略,以在蚊子中传播抗疟疾转基因,并说明建立种群修饰基因驱动器时遇到的一些预期和意外的结果。
125 I-DCG04(图 3A)用于分析恶性疟原虫提取物中的半胱氨酸蛋白酶活性。标记的蛋白质通过质谱法鉴定,表明它们都属于木瓜蛋白酶家族的半胱氨酸蛋白酶,包括钙蛋白酶 1 和恶性疟原虫蛋白酶 1、2 和 3。深入分析使用相同的探针和高度同步的寄生虫种群,揭示了高度不同的恶性疟原虫活性谱,其中恶性疟原虫蛋白酶 2 和 3 的活性在滋养体阶段达到峰值,这与这些酶在血红蛋白降解中的作用一致。然而,恶性疟原虫蛋白酶 1 的活性在裂殖子阶段达到峰值。有趣的是,在这项研究中发现,恶性疟原虫蛋白酶 1 的活性谱与基于 mRNA 丰度水平预测的活性有显著不同。这一结果凸显了 ABPP 的主要优势之一,因为只标记给定酶的催化活性部分,而不管其蛋白质丰度或 mRNA 水平如何,从而可以更准确地测量细胞中的蛋白质动态。具有针对 125 I-DCG04 ABP 的肽基环氧物库的竞争性 ABPP 平台可产生对其他半胱氨酸蛋白酶具有超过 25 倍选择性的镰状细胞蛋白酶抑制剂。这种化合物导致新环状期寄生虫的百分比呈剂量依赖性下降,但不会阻止裂殖体发育和随后的破裂,这表明镰状细胞蛋白酶与血红蛋白降解或红细胞破裂无关,而是在非红细胞期寄生虫中具有特定作用。值得注意的是,这些应用并不依赖于任何专门针对这些酶的探针,而是依赖于针对半胱氨酸蛋白酶的一般反应性探针。 DCG04 探针已广泛用于标记选定的半胱氨酸蛋白酶家族。[15] 该探针基于广谱半胱氨酸蛋白酶抑制剂 E-64,这是一种含有环氧化物弹头的天然产物,已知具有抗疟活性。[16] 环氧化物是温和的亲电试剂,其反应性来自三元环张力。[10] 有趣的是,环氧化物抑制剂通常依赖于额外的基序(如肽骨架)来将分子引导至特定蛋白酶并促进目标酶的亲核攻击。正如在先前的研究中观察到的那样,针对特定酶家族筛选肽基环氧化物可以将这种看似混杂的弹头变成出乎意料的选择性小分子抑制剂和探针。[11,14]
疟疾,特别是恶性疟原虫引起的疟疾,仍然是一个大问题,其控制受到现有药物耐药性的威胁。1 现有的最重要的抗疟药物是青蒿素类联合疗法 (ACT),其中包括速效青蒿素成分和作用较慢的伴侣药物。青蒿素能迅速杀死寄生虫,但标准的 3 天疗程可能无法消灭所有疟原虫。伴侣药物可消灭剩余的寄生虫并限制青蒿素耐药性的选择。尽管 ACT 的成分在药理学上不匹配,但它们在治疗由药物敏感寄生虫引起的无并发症疟疾方面具有显著的疗效。然而,ACT 耐药性目前在东南亚部分地区广泛存在,其表现为开始治疗后寄生虫清除延迟,是由恶性疟原虫的 Kelch (K13) 蛋白突变介导的。 2,3 此外,对 ACT 的配套药物甲氟喹 4 和哌喹 5 的耐药性已使青蒿素耐药性问题从一个主要的理论问题(因为 ACT 通常仍然有效,且只对青蒿素成分产生耐药性)转变为一个紧迫问题。例如,在柬埔寨部分地区,大多数感染恶性疟原虫的患者使用以前的国家方案双氢青蒿素-哌喹治疗无效。6
背景:在热带和亚热带国家的人们中,疟疾仍然是数十年来的主要健康问题。恶性疟原虫是引起严重疟疾并应对主要死亡率的关键物种之一。此外,该寄生虫对所有推荐药物和疗法的人产生了抵抗力。因此,迫切需要采用可靠疫苗的形式采取预防措施,以实现疟疾自由世界的目标。表面蛋白是亚基疫苗开发的可取选择,因为它们是由宿主免疫细胞迅速检测和参与的。此外,丰富的表面或膜蛋白可能会导致疫苗诱导的抗体对病原体的调整。结果:在我们的研究中,我们列出了文献中所有这些表面蛋白,这些蛋白可能在功能上很重要且对于疟原虫的感染和免疫逃避至关重要。八个质子表面和膜蛋白来自前肌细胞和红细胞阶段。使用免疫信息工具预测了这些蛋白质的三十七个七个表层(B-细胞,CTL和HTL表位),并与合适的肽接头一起设计疫苗构建体。tlr -4激动剂肽佐剂,然后是Padre序列和EAAAK接头。TLR -4受体与构造的预期模型结构对接。在模拟的生理环境下,发现疫苗和TLR -4的复合物,最低的能量-1514。结论:这项研究提供了一种新型的多源构建体,可以进一步利用,以开发疟疾的有效疫苗。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年9月11日发布。 https://doi.org/10.1101/2021.09.10.459878 doi:Biorxiv Preprint
疟原虫的无性血液阶段很容易通过同源重组来适应遗传修饰,从而使寄生虫基因的功能性研究在生命周期的这一部分中并非必不可少。然而,常规的反向遗传学不能应用于无性血液阶段复制中必不可少的基因的功能分析。已经开发了各种策略,用于浆细胞的条件诱变,包括基于重组酶的基因缺失,可调节启动子以及mRNA或蛋白质破坏稳定系统。在其中,可二聚Cre(DICRE)重组酶系统已成为p中有条件基因缺失的强大方法。恶意。在该系统中,噬菌体CRE以两种单独的酶无活性多肽的形式表达,每种酶融合了不同的雷帕霉素结合蛋白。雷帕霉素诱导的两个成分的异二聚化恢复重组酶活性。我们已经在啮齿动物疟原虫p。berghei,并表明可以在哺乳动物和蚊子寄生虫阶段具有很高的效率来实现雷帕霉素诱导的floxed DNA序列切除。此工具可用于投资基本基因的功能,不仅在无性血液阶段,而且在疟原虫生命周期的其他部分。
摘要疟疾是一种媒介传播的疾病,在全球南部造成了严重的损失。疟原虫的流行病学是人类疟疾的地理膨胀剂,其特征是被称为催眠症的休眠寄生虫储层的应计。复发是由催眠岩激活事件引起的,包括大多数血液阶段感染负担,对免疫的获得和超感染的分布产生影响。在这里,我们构建了一个新型模型,用于促进疟原虫的传播,该模型同时说明了催眠岩储层的应计,(血液阶段)超级感染和对免疫性的获取。我们首先使用有限的服务器排队网络模型来表征宿主内部动力学作为蚊子到人类传输强度的函数,从而扩展了我们以前的模型以捕获离散的免疫力水平。为了模拟传播阻滞和抗异酶免疫,我们允许在成功的人类到 - 摩斯高质传播和症状血液阶段感染作为这种免疫力水平的各个概率中的几何衰减。在混合近似情况下(概率内部分布)被视为预期的人群水平比例 - 我们将伴侣寄主和向量动力学恢复与Ross-Macdonald理论一致的降低隔室模型。然后,我们对此隔室模型进行稳态分析,该模型由在主机内级别得出的(分析)分布。为了表征瞬态动力学,我们得出了一个简化的IntegrodiventionTequations的系统,同样由主机内排队网络告知,从而使我们能够为各种
与恶性疟原虫的蛋白有关的蛋白质的结构和功能表征。这是第一个重点是PFHSP70-1在蛋白质功能和稳定性中的生物物理表征,对寄生虫的细胞保护作用。结果支持破坏蛋白质的C末端尾巴相互作用以开发新抗菌素的策略。还确定了PFHSP70-1和恶性疟原虫HSP40(PFJ1)之间功能相互作用的第一个证据。这些在疟疾领域的研究工作与“健康印度”的国家任务保持一致,博士研究获得了全球认可,并于2009年获得了Eli-Lilly亚洲杰出论文奖(一等奖)。