人体研究中的 ROI 分析 两位获得委员会认证的神经放射科医生(SO 和 YF,拥有 20 年经验)一致将 ROI 放置在 QSM 图像的中心切片上的以下每个区域中:GP、壳核、尾状核、黑质、红核、齿状核和脉络丛的低信号强度区域。然后使用开源软件(ImageJ,版本 1.50;美国国立卫生研究院,马里兰州贝塞斯达)将 ROI 的位置应用于来自同一患者或志愿者的 CT 图像。我们还根据 CT 和 MRI 扫描(包括 QSM、T1 加权、T2 加权和 T2* 加权图像)和临床信息在出血和钙化病变上放置了 ROI。当抗磁性病变被顺磁性区域包围时,优先选择内侧抗磁性(钙化)部分放置ROI。对于每个有病变的患者,最多选择3个病变放置ROI。计算每个ROI的平均CT衰减值和平均QSM值(磁化率)。当平均QSM值为正值(顺磁性ROI)时,还计算最大和第95百分位CT衰减值以及最大和第95百分位QSM值,以更好地理解CT衰减值和磁化率的特征,这在表观扩散系数的分析中通常采用(18)。对于平均QSM值为负值的ROI(抗磁性ROI),计算最大和第95百分位CT衰减值以及最小和第5百分位QSM值。通过以下对 CT 衰减值与磁化率之间的相关性进行评估:顺磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最大 QSM 值、第 95 百分位 CT 衰减值与第 95 百分位 QSM 值;抗磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最小 QSM 值、第 95 百分位 CT 衰减值与第 5 百分位 QSM 值。
对于每个指标,百分位等级表示比较国家人口中具有相同价值相同或更少价值的国家的比例。所有指标的定义都是以至于最有利的值在竞争力方面都在梁的外部,并且对应于100的百分位等级。下奥地利的百分等级,其相对排名较差。例如,比较组中所有国家的60%的百分位等级意味着同样或更差,比奥地利好40%。除了在最后一年中遍布整个国家的比较,Wifo雷达还显示了奥地利在时间t t - 1,t - 3和t - 10。这可以进行短期,中期和长期比较。
2020 年,系统 RA 和本地 RA 的加权价格之间的差距有所缩小。2021 年,系统 RA 的加权平均价格超过了本地 RA。2021 年本地 RA 的加权平均价格为 6.49 美元/千瓦月,而系统 RA 容量的价格为 7.02 美元/千瓦月。本地 RA 价格也大幅上涨——2021 年本地地区的加权平均价格从洪堡的 6.04 美元/千瓦月到克恩的 9.24 美元/千瓦月不等,而 85 百分位价格从圣地亚哥和弗雷斯诺本地容量的 7.50 美元/千瓦月到 Big Creek-Ventura 的 8.88 美元/千瓦月不等。虽然加权平均值有所增加,但与上一年相比,某些地区的 85 百分位价格有所下降,而其他地区的 85 百分位价格有所上涨。对于灵活容量,价格总体上略低于系统容量价格。 2021 年灵活容量的加权平均价格为每千瓦月 5.27 美元,而非灵活系统容量的加权平均价格为每千瓦月 6.48 美元。
Bianco, Samuel Thomas 研究后座 50 百分位男性拟人测试设备和尸检人体替代物在正面机动车碰撞中的胸部生物力学反应委员会主席:A. R. Kemper 教授
注意:改进指数可以解释为如果对照组中的普通学生接受了干预,其百分位排名的预期变化。例如,改进指数 +9 表示如果学生接受了 ITSS,则普通对照组学生的预期百分位排名将增加 9 分。改进指数值是通过对符合 WWC 组设计标准的结果分析结果进行平均得出的,如 Wijekumar、Meyer 和 Lei (2012, 2017) 所报告的那样。正改进指数并不一定意味着估计的效果具有统计意义。理解结果包括格雷默读测试和 13 项研究人员设计的测量方法,这些测量方法通过识别主要思想、问题和解决方案以及评估使用结构来组织正确思想来测试学生理解书面文本的能力。ITSS 对青少年识字主题领域内的其他结果的影响尚不清楚,包括字母表、阅读流畅度、一般识字成就、写作惯例、写作效率和写作质量。
在工程硕士课程学习至少两个学期,并完成至少 18 个学分的认可课程且平均绩点 (GPA) 至少为 3.75 后,学生可以申请加速进入工程科学博士课程。只有优秀学生才能申请进入该课程,并且他们已证明自己已准备好开始博士级研究活动。此外,学生的 GRE 成绩必须在语言推理部分和分析性写作部分达到或超过 50 百分位,定量推理部分达到或超过 80 百分位,或总分位数达到或超过 180。对于国内学生,本科平均绩点 (GPA) 达到或超过 3.5 也是一项要求。对于国际学生,托福成绩至少为 550 分(笔试成绩),或 IBT 成绩为 80 分,或雅思成绩为 6.5 分是额外要求。在特殊情况下,为了替代上述 GRE 和 TOEFL 分数要求,学生当前的指导老师可以在学校主任的批准下,提交推荐信,以促进其学生加速进入工程科学博士课程。
预测表 ................................................................................................................................................................................................ 9 负荷预测情景 ................................................................................................................................................................................ 13 负荷情景摘要 ................................................................................................................................................................................ 15 COVID-19 影响 ...................................................................................................................................................................... 16 表 I-1a:NYCA 基线能源和需求预测 ...................................................................................................................................... 19 图 I-1:NYCA 能源预测 – 年能源,GWh ............................................................................................................................. 20 图 I-2:NYCA 夏季峰值预测 – 同步峰值,MW ............................................................................................................. 20 图 I-3:NYCA 冬季峰值预测 – 同步峰值,MW ............................................................................................................. 21 图 I-4:NYCA 基线峰值预测对比 – 同步峰值,MW ............................................................................................................. 21 表 I-1b:NYCA 基线年能源摘要预测 – GWh ........................................................................................................... 22 表 I-1c:NYCA 基线夏季同期峰值需求预测摘要 – MW .............................................................................. 23 表 I-1d:NYCA 基线冬季同期峰值需求预测摘要 – MW ............................................................................. 24 表 I-2:基线年度能源,历史与预测 ............................................................................................................................. 25 表 I-3a:基线夏季同期峰值需求,历史与预测 ............................................................................................................. 26 表 I-3b:基线冬季同期峰值需求,历史与预测 ............................................................................................................. 27 表 I-4a:基线夏季非同期峰值需求,历史与预测 ............................................................................................................. 28 表 I-4b:基线冬季非同期峰值需求,历史与预测 ............................................................................................................. 29 表 I-5:G-to-J 地区基线峰值需求,历史与预测...................................................................................................... 30 表 I-6a:由于天气原因,基线能源的第 90 百分位预测 ............................................................................................................. 31 表 I-6b:由于天气原因,基线能源的第 10 百分位预测 ............................................................................................................. 32 表 I-7a:由于天气原因,基线夏季同期峰值需求的第 90 百分位预测 ............................................................................. 33 表 I-7b:由于天气原因,基线夏季同期峰值需求的第 10 百分位预测 ............................................................................. 34 表 I-7c:由于天气原因,基线冬季同期峰值需求的第 90 百分位预测 ............................................................................. 35 表 I-7d:由于天气原因,基线冬季同期峰值需求的第 10 百分位预测 ............................................................................. 36 表 I-7e:由于天气原因,基线夏季同期峰值需求的第 99 百分位预测................................................. 37 表 I-7f:由于天气原因的基线冬季同期峰值需求 99 百分位预测 ............................................................................................. 38 表 I-8a:能源效率以及规范和标准能源影响 ............................................................................................................. 39 表 I-8b:能源效率以及规范和标准夏季峰值影响 ............................................................................................................. 40 表 I-8c:能源效率以及规范和标准冬季峰值影响 ............................................................................................................. 41 表 I-9a:太阳能光伏铭牌容量,电表后 ............................................................................................................................. 42 表 I-9b:太阳能光伏年度能源减少量,电表后 ............................................................................................................................. 43 表 I-9c:太阳能光伏峰值减少量,电表后 ............................................................................................................................. 44 表 I-9d:太阳能光伏最大发电量,电表后........................................................................................................... 45 表 I-10a:非太阳能分布式发电铭牌容量,电表后 ........................................................................................................ 46 表 I-10b:非太阳能分布式发电年度能源减少量,电表后 ............................................................................................. 47 表 I-10c:非太阳能分布式发电峰值减少量,电表后 ............................................................................................. 48 表 I-11a:电动汽车库存预测 ................................................................................................................................................................................................ 49 表 I-11b:电动汽车年度能源使用量 .......................................................................................................................................... 50 表 I-11c:电动汽车夏季同期峰值需求 ............................................................................................................................. 51 表 I-11d:电动汽车冬季同期峰值需求 ............................................................................................................................. 52 表 I-12a:能源存储铭牌容量,电表后 ............................................................................................................................. 53 表 I-12b:能源存储能源影响 ............................................................................................................................................. 54 表 I-12c:能源存储峰值减少,电表后 ............................................................................................................................. 55 表 I-13a:建筑电气化年度能源使用量 ............................................................................................................................. 56 表 I-13b:建筑电气化夏季同期峰值需求 ............................................................................................................. 57 表 I-13c:建筑电气化冬季同期峰值需求 ................................................................................................................ 58 表 I-13d:各情景下的电气化影响 ................................................................................................................................ 59 表 I-14:大型负荷互联预测 ........................................................................................................................................ 60电表后储能峰值削减 ...................................................................................................................................................... 55 表 I-13a:建筑电气化年度能源使用量 ...................................................................................................................................... 56 表 I-13b:建筑电气化夏季同期峰值需求 ...................................................................................................................... 57 表 I-13c:建筑电气化冬季同期峰值需求 ...................................................................................................................... 58 表 I-13d:按情景划分的电气化影响 ...................................................................................................................................... 59 表 I-14:大型负荷互联预测 ............................................................................................................................................. 60电表后储能峰值削减 ...................................................................................................................................................... 55 表 I-13a:建筑电气化年度能源使用量 ...................................................................................................................................... 56 表 I-13b:建筑电气化夏季同期峰值需求 ...................................................................................................................... 57 表 I-13c:建筑电气化冬季同期峰值需求 ...................................................................................................................... 58 表 I-13d:按情景划分的电气化影响 ...................................................................................................................................... 59 表 I-14:大型负荷互联预测 ............................................................................................................................................. 60
摘要 目的 研究环境温度对心血管疾病 (CVD) 死亡负担的影响;估计性别、年龄和教育水平对该负担的影响修正。方法 我们获取了 2007 年至 2013 年中国 15 个特大城市的每日气温和 CVD 死亡率数据,其中包括 1 936 116 例 CVD 死亡病例。采用拟泊松回归结合分布滞后非线性模型估计每个城市气温与死亡率之间的关系。然后,采用多元荟萃分析得出全国范围内气温的总体效应估计值。分别计算寒冷和炎热(即低于和高于最低死亡温度,MMT)条件下的死亡归因分数。MMT 定义为与最低死亡风险相关的特定温度。结果 15 个城市的 MMT 从温度的第 70 百分位到第 99 百分位不等,全国范围内以第 78 百分位为中心。总体而言,17.1%(95% 经验置信区间为 14.4% 至 19.1%)的心血管疾病死亡(330 352 例死亡)可归因于环境温度,不同城市之间存在显著差异,从上海的 10.1% 到广州的 23.7%。大多数可归因的死亡是由于寒冷造成的,其中 15.8%(13.1% 至 17.9%)对应于 305 902 例死亡,而 1.3%(1.0% 至 1.6%)和 24 450 例死亡是由于高温造成的。结论 本研究强调寒冷天气是造成大部分与温度相关的心血管疾病死亡负担的原因。我们的研究结果可能对制定减少极端气温导致的心血管疾病死亡率的政策具有重要意义。