如今,安全摄像机的区域监控系统在世界各地被广泛使用。然而,这些系统的效率并不如其应有的那么高。用户通常很难在很长一段时间内获得有关特定对象、区域和主题的大量信息。此外,从这些监控系统中收集统计数据以供进一步分析通常不方便且效率低下。
440009 2,3,4学生,电子和电信工程系KDKCE,Nandanvan Nagpur,马哈拉施特拉邦,440009摘要:在当前的技术进步时代,确保安全性和监视已成为头等大事。物联网(IoT)和机器人技术的集成为开发基于IoT的监视机器人铺平了道路,该机器人是一种有效,可靠且智能的安全系统。本文介绍了这种机器人的设计,实现和评估,突出了其各种功能。基于IoT的监视机器人配备了一系列传感器,包括超声波,运动,温度和湿度传感器,使其能够检测入侵,监测环境条件并在任何违规情况下提醒相关当局。该系统结合了Wi-Fi和Zigbee等无线通信协议,通过用户友好的Web界面和智能手机应用程序促进远程监视和控制。在现实生活中(例如房屋,办公室和公共场所)进行了测试和评估所提出的系统,证明了其增强安全性和监视工作的潜力。这项研究的发现有助于通过物联网和机器人技术的协同作用开发安全,自动化和相互联系的未来。关键字:机器人技术,监视,物联网。
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA
} void loop(){int voltageReading = allageRead(voltage_sensor_pin); float电压=(VoltaGereDing * 5.0 / 1023.0) * 5.0; int currentReading = allageRead(current_sensor_pin); float电流=((CurrentReading -512) * 5.0 / 1023.0) / 0.185; int smokeValue = aLANEGREAD(SMOKE_SENSOR_PIN); lcd.clear(); lcd.setcursor(0,0); lcd.print(“ V:”); lcd.print(电压); lcd.print(“ v”); lcd.print(“ i:”); lcd.print(当前); lcd.print(“ a”); lcd.setcursor(0,1); if(smokeValue> smoke_threshold){lcd.print(“检测到烟雾!“);} else {lcd.print(“ no烟”);} serial.print(“ v:”); serial.print(电压); serial.print.print(“ i:”); serial.print.print(current); serial.print.print(“ smoke.”电压||
摘要 - 必须实时监控电池,以确保其符合其设计的寿命。此外,必须计算和控制电池供应的能源成本,以使太阳能发电厂企业家实际上获利。该项目旨在为电池条件开发基于IoT的监视和控制系统,尤其是电池供应的能源消耗成本。该系统使用ESP32微控制器,INA219传感器,单个通道5 VDC OptocOpoler继电器和OLED显示器。ESP32从INA219传感器中处理电流和电压,然后在OLED显示屏上显示。显示的参数包括消耗的能源成本,电流,电压,电源,消耗的能源和使用的电池容量。数据也将使用IoT发送到Blynk网站,从而可以实时监视这些参数。基于测试结果,计算能源成本的平均误差为0.046%,其他测量或计算的参数低于1%。此系统还可以使用Blynk平台将功率流驱散到负载。可以得出结论,该系统运行良好,从而实现了电池参数的基于IoT的监视和控制。
摘要 人工智能 (AI) 已被证明是提高视频监控系统效率、有助于公共安全的关键工具。本系统评价旨在分析人工智能在这一领域的贡献,符合可持续发展目标 16 (SDG 16),即促进和平与包容的社会。我们分析了从 Scopus、WOS、ProQuest、EBSCO、IEEE Xplore 和 Science Direct 等主要数据库中提取的 145 篇文章。使用 PRISMA 方法,应用纳入和排除标准,得到 42 篇与评价相关的文章。研究结果表明,物联网、计算机视觉和边缘计算等先进的人工智能技术的使用与人工智能的结合最为紧密,增强了人工智能在视频监控系统中的功能。在此框架中,深度学习是优化这些应用程序的重要基础。最后,本评价的结果为未来人工智能在视频监控中的应用研究奠定了坚实的基础。所评估的技术有可能进一步促进不同环境和环境下的安全性和运营效率的提高。
○ 奥村哲平(JAXA),木村友久,松浦慎吾(MHI),增田和美(静冈科学技术大学) ○ 奥村哲平(JAXA),木村友久,松浦慎吾(MHI),増田和三(静冈理工科大学) 重交通轨道上的火箭上面级是主动碎片清除的潜在目标。 在设计主动碎片清除卫星时,火箭体的姿态是一个重要参数。 此外,由于空间等离子体充电,航天器在火箭体和卫星之间会产生电位差。 该电位差可能会在捕获时引起放电。 由于我们不知道轨道上的姿态和电位差的信息,JAXA 和三菱重工业公司开发了一种仪器,用于在火箭完成任务后测量火箭体的姿态和电位。 该仪器应该很简单,以便连续与火箭体一起配备。因此,仪器由少量传感器(姿态传感器和电位传感器)和原电池单元和通信模块组成。本次演讲将介绍该仪器的最新情况。 混雑轨道に滞留したロケット上段は轨道上の环境保存のために有效な除去対象である。ロケット上段を廃弃する取得卫星の捕获shisutemuを设计する上で、轨道上でのロケット上段の姿势が分からないので设定 计の难易度が上がる。また、宇宙プラズマ(电离层プラズマやオーrora电子)によって生じるロケット上段と推进卫星の电位差は、捕获时に静电気排水を発生させる可能性があり电気的な観点でもrisukuがある。三菱重工とJAXAは共同研究活动の元、ロケット上段がミッション结束した后、姿势や帯通话が 変化していく状况を计测するための装置を开発している。装置は未来的にいくつものロケット上段に搭装载可能なよう简素な构成となっており最低限のセンサ(姿势と帯电)と一次电池、装置及び通信で构成される。本讲演ではロケット上段モニタrinグ装置の开発状况について报告する。
1 电气工程系,1 GH Raisoni 工程与管理学院,浦那,印度 摘要:在当今竞争激烈的工业环境中,电池对于为各种类型的设备供电至关重要。它们主要用于电网系统和电动汽车。为了提高电池运行效率并延长其使用寿命,并防止其达到破坏性状态,电池监控系统 (BMS) 被用于众多工业和商业应用中。BMS 功能的集成及其模块化是当前 BMS 研究中一个引人入胜且流行的焦点。实施了各种监控技术来评估电池的充电状态 (SoC)、温度和电流水平。已经开发了一个 BMS 原型来监督这些电池参数。该 BMS 使用微控制器、传感器和其他组件(如 ESP8266 处理器、温度传感器、电压传感器和电流传感器 (ACS712))设计。该系统能够评估和显示重要指标,例如电池温度、充电和放电电流、电池电压和指定型号电池的 SoC。电池数据和强调系统主要特性的结果显示在 BLYNK 屏幕上。索引术语 - 无线电力传输、太阳能公路、太阳能电池板、可再生能源