摘要:据推测,通过 CaSi 2 拓扑脱插合成的二维硅纳米片 (Si-NS) 由 sp 3 杂化硅原子的弯曲层组成,这些硅原子与其他三个框架 Si 原子以及一个终端原子或功能团(例如 H、Cl 或 -OH 基)结合。在这里,我们应用 1 H{ 35 Cl} 和 29 Si{ 35 Cl} 共振回波饱和脉冲双共振 (RESPDOR) 固态 NMR 实验来直接确认 Si-NS 内氯化 Si 原子的存在。将观察到的 1 H{ 35 Cl} RESPDOR 失相绘制为 35 Cl 饱和脉冲偏移的函数,可以测量 35 Cl 中心跃迁 (CT) 四极粉末图和氯四极耦合常数 (CQ )。对 1 H{ 35 Cl} RESPDOR 失相曲线进行建模表明,Si-Si 层间距约为 6 Å。平面波 DFT 计算表明,Si-NS 的直接带隙跃迁随着氯化程度的增加而减小,这表明氯化是调整应用带隙的可行途径。
摘要——采用 CMOS 工艺实现的硅光子学已经改变了计算、通信、传感和成像领域。尽管硅是一种间接带隙材料,阻碍了高效发光,但在高压反向击穿雪崩模式下工作时在发射宽带可见光的硅 pn 结领域已经进行了大量研究。在这里,我们展示了在开放式代工厂微电子 CMOS 工艺 55BCDLite 中实现的正向偏置硅微发光二极管 (micro-LED) 的高亮度近红外 (NIR) 光发射,无需任何修改。在室温连续波操作下,对于直径为 4 µ m 的器件,在低于 2.5 V 的电压下,在中心波长为 1020 nm 处实现了超过 40 mW/cm 2 的外部发光强度。这是通过采用具有保护环设计的深垂直结来实现的,以确保载流子传输远离器件表面和非辐射复合通常占主导地位的材料界面。在这里,我们还展示了仅使用标准多模光纤和单片集成 CMOS 微型 LED 和探测器的完整芯片到芯片通信链路。
乌加。 Ducipiditat lanimpo restibus volupti ncidenti ullabores quid quis et atus si aborion rehendae ratibeaquis que nihilic tation。 Optatat remporpos nothing iumquo temoluptatur as aliquat as experiae estiis and ipicid molum vellorumquam or eium erissequis estis sunt re pror antorehenis adis quas dolorpo rporio omnis andamus accae essum exped and que liquodi taerchitaquo eatus que postem。和 dollam ipsantium inctemquis 核心 autes doloreh endandi pienistium estrum,sin reperro te volor sam es maximinciis endae pos ditatempore nem non pora si debit odiandit ommossi rerepudae perovit vollaccus simet accupta tibust,tem volorpos alitatium invenis isquam que nam,sero toriatquia quunture pariam exeraes tisitibus molore perrrorore verumquam quae doluptatium haruntendam,sus autem issint aut erro blaut quo et ipsam sinum hariberatem doloris ilignis deliquae con essit eos doluptas ea sequatios maioreperat。你找到有福之人了吗?他们渴望被爱和变得聪明吗?
硅是电子中使用的主要材料。电力电子的演变以及对更多功率效率的半导体设备的需求,将硅带到了极限。碳化硅是一种具有宽带隙,高临界电场,高温电导率和饱和速度的电子应用的有希望的材料。除了其优越性,碳化硅碳化物具有与硅2界面相比,在SIC/SIO 2界面中的界面陷阱的缺点大约有两个数量级。此缺点的结果是将压力在MOS电容器和功率MOSFET的门上施加应力时,带有带电压的转移。为了研究SIC/SIO 2界面的纯特性,两种应力方法,当前的脉搏应力和栅极电压升压,已应用于室温和较高温度下的硝基氧化物的4H-SIC电容器上。检查了频段电压恢复。可以在室温下恢复频带电压,而在较高温度下则不需要恢复,而在室温下可以恢复。研究了最大电压(初始电压)和下降的电压速率,并显示出更高的初始电压和较低的电压速率,显示出更好的V FB恢复。实施了200毫秒的电流脉冲应力,并且几乎具有与持续50秒的电压上升相似的影响。
宽带隙 (WBG) 半导体材料,例如碳化硅 (SiC)、氮化镓 (GaN) 或氧化镓 (Ga2O3),使电力电子元件比硅基 (Si) 元件更小、更快、更可靠、更高效。目前,全球约有一半的总能源消耗是电力,预计到 2030 年,80% 的电力将通过电力电子设备流动。然而,基础科学和材料科学还有很大的发展空间;宽带隙材料确实无处不在;几乎整个地壳都是由宽带隙氧化物形成的,还有许多硫族化合物、卤化物、有机和生物材料也是宽带隙材料,还有许多其他可能性。本期特刊是一系列文章的集合,报告了最近获得的结果的简要评论以及在这一广泛研究领域产生的新发现。
碳化硅 (SiC) 和氮化镓 (GaN) 器件将逐渐取代现有的硅技术,因为硅已经达到其物理电学性质的固有极限。 因此,自 2007 年以来,硅基器件已不再能够跟上摩尔定律的步伐,曲线出现了平台期:摩尔预测,集成电路制造商每年应该能够将单个硅芯片上可容纳的晶体管数量翻一番。 相反,晶体管尺寸正在以较慢的速度减小;自 2007 年以来,尺寸减小的进程已明显放缓。 美国劳伦斯伯克利国家实验室 (LBNL) 最近制造的最小硅 MOSFET 的宽度(沟道长度)仅为 7 纳米,即仅比单个硅原子的尺寸大一个数量级。 在这种几何尺寸下,可能会发生量子隧穿,并且器件将失去控制电流流动的能力。因此,最近的发展意味着硅技术正在接近该材料的理论物理极限。由于硅的特性阻碍了器件性能的进一步提高,微电子研发变得更具挑战性,需要投入大量资金,有时似乎不经济,因为它太昂贵了。
固定的1.2V输出,接近于硅的带隙电压。电流型BGR的输出电压与硅的带隙电压无关,可以根据应用需要进行调整,这也是电流型BGR仍在许多模拟集成电路中广泛使用的原因。由于电流型BGR的输出电压与硅的带隙电压无关,因此称之为电压基准(VR)更为合适。目前,VR的研究方向都与其主要性能参数有关。一是功耗,降低功耗的常用方法是采用亚阈值金属氧化物半导体场效应晶体管(MOSFET),因为亚阈值MOSFET的电流比普通MOSFET低得多,适合于低功耗设计[1-8]。另一个是输出电压的温度系数(TC),它是反映VR性能的重要参数。迄今为止,世界各地的研究人员已经提出了许多方法来提高VR的TC,以适应不同的应用。传统BGR输出电压中含有高阶非线性项,导致输出电压的温度曲线具有一定的曲率,从而决定了输出电压的温度系数。有的文献利用非线性电流来补偿输出电压中的高阶非线性项[9~14]。也有研究者将温度范围分成几部分,对每部分温度分别进行补偿,这种方法称为分段补偿[9,15]。一般来说,这种方法的补偿效果较好,但是电路结构稍复杂。针对正向偏置PN结电压的非线性特性,补偿方法有两种,一种方法是利用流过正向偏置PN结的不同TC电流来补偿曲率[10,16~20],另一种方法是通过不同的器件来补偿曲率[21,22]。以上两种方法都是利用PN结的温度特性来补偿温度曲率,比较适用于基于传统BGR电路结构的VR。亚阈值BGR在低功耗方面具有优势,但是传统BGR具有更好的工艺兼容性和更好的TC,这也是本文基于传统电流型BGR设计VR的原因。段全振等人在2015年提出了一种利用NPN BJT进行补偿的方法[21],该补偿曲率的方法简单实用,但需要NPN BJT工艺的支持,有些特定工艺无法提供NPN BJT,根据特定工艺的特点,我们利用工艺设计了一种高精度曲率补偿VR
