abtract。哈希功能是基本的加密原始功能。某些哈希功能试图通过减少已知的严重问题来证明对碰撞和前图攻击的安全性。这些哈希功能通常具有一些允许减少的额外属性。哈希函数是加性或乘法的,使用量子计算机的隐藏子组问题算法容易受到量子攻击的影响。使用量子甲骨文到哈希,我们可以重建哈希函数的内核,这足以找到碰撞和第二次预示。当哈希函数相对于Abelian组中的组操作是加法的时,总会有足够的实现此攻击。我们将具体的攻击示例提交了可证明的哈希功能,包括对⊕线性哈希函数的前攻击和某些乘法同构哈希方案。
diatom-Diatom碰撞的量子古典(QC)方法是由G.D.计费[6],被证明是准确,有效的,可以获得涉及振动能传递的重型突击过程的横截面和速率系数。该方法的关键特征是,振动的自由度是机械处理的,而其他自由度(翻译和旋转运动)则经过经典处理。为了以自洽的方式处理整个系统,量子机械的自由度必须在周围经典动作的影响下正确地发展。反过来,经典的自由度必须对量子过渡做出正确的反应。在目前的两个双原子分子的量子古典方法中,振动和旋转振动耦合通过紧密耦合方程式对量子进行量子处理。首先,总振动波函数是根据旋转扰动的摩尔斯波波函数ϕ v 1(r 1,t)ϕ v 2(r 2,t)扩展的:
§简介。HIC的历史。 §LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和diloptonHIC的历史。§LHC实验:Alice,LHCB,CMS和Atlas Physics可观察:§全球性能§重型夸克和高pt§quarkonia§photon和dilopton
成立于1991年,与卢卡斯学院(Lucas College)和圣何塞州立大学(SJSU)合作的有组织的研究和培训部门Mineta Transportation Institute(MTI),通过提高所有人的安全,效率,可访问性以及我们国家运输系统的便利性来提高所有人的流动性。通过研究,教育,劳动力发展和技术转移,我们帮助创建了一个联系的世界。MTI领导了由美国运输部(California State University Consmentation Consortium),由美国运输部(CSSUTC)资助的,由美国运输部(CSUTC)资助了由加利福尼亚州的联邦法案1和极端的培训(CCE)培训(CSUTC)资助(CSUTC),由美国运输部(CSSUTC)通过1和极端的活动培训(CCE)(CSCE)(CSUTC)资助了美国运输部(CSUTC),由美国运输部(CSSUTC)和极端的培训(CCE)培训(CSCE)(CSCE),领导了美国运输部(CASUTC)资助的公平,高效和可持续运输(MCEEST)的内部收益联盟(MCEEST)(CSUTC)。MTI专注于三个主要职责:
由于大多数机场空间有限,通常只有更有效地利用现有平行跑道或修建额外的平行跑道才能增加机场容量。本研究重点关注与独立平行进近相关的碰撞风险以及可判断碰撞风险可接受的最小平行跑道间距。研究了几种风险措施和方法对目标安全水平 (TLS) 评估的适用性。两种方法的应用提供了一个 TLS 区域,定义了决策者可以从中选择 TLS 的范围。开发了一种风险模型,用于确定在仪表气象条件 (IMC) 下进行独立平行进近的飞机之间的碰撞风险,从而使用仪表着陆系统 (ILS) 程序。数值评估表明,在各种运行条件下,尤其是在接近航向道转弯处和双机复飞期间,两架飞机之间的碰撞概率可能很大。为了尽量将碰撞风险保持在较低且可接受的水平,确定了三种降低风险的措施。假设应用了这些措施,并假设使用来自指定 TLS 区域的 TLS,如果跑道间距大于 1270 米,则独立平行进近可能被判断为足够安全,如果间距小于 930 米,则不安全。
5.分离函数推导 ................................................................................................ 72 5.1.碰撞风险建模 ................................................................................................ 72 5.2.数据分析 ............................................................................................................. 77 5.3.性能指标 ............................................................................................................. 93 5.4.碰撞概率 ............................................................................................................. 102 5.5.区间分析 ............................................................................................................. 111
• 德克萨斯州律师协会 Cindy V. Tisdale...................................................................................会长 Kennon L. Wooten..............................................董事会主席 Steve Benesh。执行董事 Hedy Bower..............................................................TexasBarCLE 主任
鸟类与固定物体(如塔)相撞是北美鸟类死亡的重要原因(Longcore 等人,2012 年)。塔的特征(包括高度、照明和拉线的存在)可能会对飞鸟造成的风险产生一定影响(Gehring 等人,2011 年)。作为该项目的一部分,在发电站上建造了一座自支撑(未用拉线)钢格构通信塔。该塔高 53.6 米(215 米),是项目现场的最高点。由于塔的高度和泄洪道下游区域群居筑巢海鸥的距离,在 2020 年(塔部分建成时)和 2022 年(项目运营的第一年)进行了鸟类碰撞调查,未发现鸟类碰撞的证据(WRCS 2021、WRCS 2023)。 2023 年进行了调查,以监测该塔对该地区鸟类造成的碰撞风险并确定是否需要采取任何缓解措施。
即将开设的课程如下。要注册,请填写课程申请表并将其通过电子邮件发送给华盛顿州巡逻训练学院的 Zachary Bloomfield 下士。申请应在课程开始前四周提交,并不保证一定能被录取。在与 WSP 讲师协商后,在课程开始前四周内提交的申请仍可能被考虑。申请将按先到先得的原则处理。被录取的学生将在课程开始前四周收到电子邮件通知。宿舍可能提供给处于旅行状态的学生。如果要求在 WSP 校园内住宿,请在申请表上注明。
Josie Fullerton在格拉斯哥大学获得了神经科学和生物医学科学MRE的理学学士学位。然后,她在Strathclyde大学完成了博士学位。凯特琳·科斯格罗夫(Caitlin Cosgrove)毕业于格拉斯哥大学(University of Glasgow),并获得了人类生物学的理学学士学位(荣誉)。她现在正处于英国心脏基金会(BHF)资助的博士学位计划的MRES轮换年中,她希望在此期间进行与细胞外囊泡(EV)衍生的缺血性中风中的MicroRNA有关的进一步研究。丽贝卡·鲁尼(Rebecca Rooney)是由BHF资助的格拉斯哥大学心血管科学的最后一年博士学位候选人,他调查了缺血性中风后电动汽车的作用。Lorraine的工作在英国格拉斯哥大学的心血管和医学科学研究所拥有一支研究团队。他们正在确定在缺血性中风的情况下利用装有治疗货物的电动汽车的潜力。她从Strathclyde大学获得了心血管药理学博士学位,并且已经是PI 15年了。