Loading...
机构名称:
¥ 1.0

摘要:在此手稿中,我们考虑轨迹计划和控制中的避免障碍任务。这些任务的挑战在于难以解决最佳控制问题(OCP)的非convex纯状态约束。强化学习(RL)提供了处理障碍限制的更简单方法,因为只需要建立反馈功能。尽管如此,事实证明,我们经常获得持久的训练阶段,我们需要大量数据来获得适当的解决方案。一个原因是RL通常没有考虑到基本动力学的模型。相反,此技术仅依赖于数据中的信息。为了解决这些缺点,我们在本手稿中建立了一种混合和分层方法。虽然经典的最佳控制技术处理系统动力学,但RL专注于避免碰撞。最终训练的控制器能够实时控制动态系统。即使动态系统的复杂性对于快速计算或需要加速训练阶段的复杂性太高,我们也通过引入替代模型来显示一种补救措施。最后,总体方法应用于在赛车轨道上引导汽车,并通过其他移动的汽车进行动态超车。

混合碰撞避免方法

混合碰撞避免方法PDF文件第1页

混合碰撞避免方法PDF文件第2页

混合碰撞避免方法PDF文件第3页

混合碰撞避免方法PDF文件第4页

混合碰撞避免方法PDF文件第5页