Birla Carbon使用“摇篮来登机”生命周期评估(LCA)来量化产品碳足迹并确定改善组织整体碳足迹的机会。LCA评估从原料提取(摇篮)到最终产品(Carbon Black)的温室气体影响,准备离开工厂门。
在广泛温度范围内的扩展系数。[2] CFS不仅可以用作有效的热管理材料,以维持具有高热通量的微电源组件的功能和可靠性,而且还用作高性能复合材料,用于对空气空间场中飞行设备的热保护。[3]尽管有广泛的用途,但基于音调的CFS是唯一具有高成本的高度传导性CF的商业物种。[4]作为一种镇压,其他商业板的CF具有强大的机械性能,但由于其有限的石墨结晶度,导热率较差,从而确定了它们作为轻质结构材料的限制应用。[2a,5]在这种情况下,有必要将高度传导纤维的替代来源扩展到唯一的基于螺距的CF之外。[2b,6]一个直观的选择是将基于PAN的CFS转换为高电导传导性的特征,但仍然是一项禁止的任务,这受到线性Poly-Merers 1D拓扑与目标石墨气质的2D拓扑之间的固有不相容性的挑战。[5b,7]
开发了基于商业软件 Ultis ® 的自动化任务序列,结合新的预处理和后处理工具,以实现对从大型复杂 CFRP 组件获得的超声波数据的全自动分析。在包含各种人工缺陷的参考面板上,结果 90/95 为 6.8 毫米。新工具包括 C 扫描投影优化器,可最大限度地减少 3D 到 2D 转换期间的缺陷变形,一种有效的分割方法,可解决具有挑战性的特征(共固化纵梁、层脱落、多种厚度变化),以及一种能够自动从 A 扫描集合中提取指示的新型缺陷检测算法。结果表明,该方法满足检测要求,同时显著缩短了分析时间。
1 创新园区,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;saldosari@kacst.edu.sa 2 克兰菲尔德大学增强复合材料与结构中心,克兰菲尔德 MK43 0AL,英国 3 先进材料技术研究所,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;bmalotaibi@kacst.edu.sa(BMA);kalogab@kacst.gov.sa(KAA);dalshammari@kacst.edu.sa(DOA);thaar@kacst.edu.sa(THA);sdrees@kacst.edu.sa(SDA) 4 空间与地球科学研究所,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;alblehed@kacst.edu.sa(KSA); saldoihi@kacst.edu.sa (SAA) 5 未来经济技术学院,阿卜杜勒阿齐兹国王科技城,利雅得 11442,沙特阿拉伯;salsaleh@kacst.edu.sa * 通讯地址:bshammari@kacst.edu.sa;电话:+966-114813707
日本东京,2022 年 2 月 17 日——帝人株式会社今天宣布,该公司已推出一种轻质、坚固且经济高效的碳纤维机织织物,该织物采用该公司专有的丝束铺展技术开发而成。这种新型机织织物采用 3K(3,000)碳纤维长丝制成,适用于需要低重量和设计灵活性的应用,例如汽车内饰材料和体育用品。帝人利用其内部的丝束铺展技术,成功地将 3K 织物从成型厚度 0.2 毫米减薄至约 0.15 毫米,与 1K 机织织物成型为碳纤维增强塑料 (CFRP) 时的厚度相同。由于织物交叉纱线的平坦起伏,用帝人新织物制成的 CFRP 具有出色的平滑度,与用 1K 碳纤维机织织物制成的 CFRP 相比,其强度更稳定(根据该公司的内部研究)。此外,帝人特殊的丝束铺展技术效率高,使织物成本低于传统的 1K 碳纤维机织织物。此外,尽管使用 3K 纱线(200g/m 2),帝人仍将重量减轻了 35%,与使用 1K 纱线(125g/m 2)制成的织物相同。帝人现在将向工业和体育产品制造商推销其新面料。加上帝人产品组合中的其他铺展丝束碳纤维机织织物,该公司的目标是在 2030 财年实现 20 亿日元的销售额。展望未来,帝人将继续通过其他创新、高性能材料和解决方案加强其碳纤维产品线,并秉持成为一家支持未来社会的公司这一长期愿景。
在土木工程市场中通常需要以成本效益,高耐用性和低密度为特征的可持续材料,以生存不利的严重负荷和恶劣的环境环境。因此,在建筑和建筑工程中的新应用使使用复杂的复合材料来增强广泛的建筑结构。碳纤维增强聚合物(CFRP)具有明显的属性,例如高特异性强度,刚度和轻质性质,对混凝土结构的修复和增强引起了极大的兴趣。提高任何建筑材料(例如CFRP)的内在材料质量是使其更好的方法。一旦CFRP的质量提高,与使用材料相关的许多限制都可以克服。因此,此评论详细介绍了CFRP在不同建筑结构部分中的特征和应用,包括混凝土板,柱,梁,横梁等。强调了CFRP的不同制造技术和表面修饰,以洞悉其功能和可能的缺点。此外,讨论了CFRP及其在循环经济中的回收潜力的可持续性问题。我们通过在土木工程应用中提供有关CFRP复合材料使用的前景和挑战来得出结论。
Mahgoub,S.,Cacciottolo,T.,Hydes,T.,Hardy,T.,McGinty,G.,Tavabie,O.,Cathcart,J.,Premathilaka,C.,Mukhopadhya,A.,A.国家NAFLD管理研究确定了2019年至2022年之间英国提供护理的差异。JHEP报告,5(12)。https://doi.org/10.1016/j.jhepr.2023.100897
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
摘要 - 运动计划算法应在将它们部署到真实车辆中之前对大型,多样化和现实的场景进行测试。但是,现有的3D模拟器通常专注于感知和端到端学习,缺乏运动计划的特定接口。我们提供了一个关注运动计划的Carla模拟器的接口,例如,在交互式环境中创建可配置的测试方案并执行运动计划者。此外,我们引入了一个从基于LANELT的地图到Opendrive的转换器,从而可以在Carla中使用CommonRoad和Lanelet2地图。我们的评估表明,我们的界面易于使用,有效地创建新的方案,并可以成功整合运动计划者以求解CommonRoad方案。我们的工具在commonroad.in.tum.de上以开源工具箱的形式发布。