光场的四波混频 (FWM) 已广泛应用于量子信息处理、传感和存储。它还构成了非线性光谱的基础,例如瞬态光栅、受激拉曼和光子回波,其中相位匹配用于选择物质三阶响应的所需分量。在这里,我们报告了一项实验研究,研究了由 FWM 在热 Rb 蒸汽中产生的一对压缩光束的二维量子噪声强度差谱。该测量揭示了由强泵浦场引起的 AC 斯塔克位移所修饰的 χ (3) 磁化率的细节,与经典的探测和共轭光束强度测量相比具有更高的光谱分辨率。我们展示了如何利用压缩光的量子关联作为光谱工具,与经典工具不同,它对外部噪声具有鲁棒性。
方法:在这项前瞻性研究中招募了29例T2DM和24例健康对照组(HC)患者。QSM图像用于评估九个灰色核的高铁区域中的全结构体积(V WH),区域磁化率值(MSV RII)和体积(V RII)。在组之间比较了所有QSM数据。接收器操作特征(ROC)分析用于评估组之间的区分能力。也使用逻辑回归分析建立了来自单个和联合QSM参数的预测模型。进一步分析了MSV RII与认知评分之间的相关性。通过错误发现率(FDR)校正所有统计值的多个比较。统计上显着的P值设置为0.05。
通过调整它们的不对称性[12–14]、成分[6,15]和宽度[16],已经产生了在红外波长下实用的可调结构。[12,14] Gurnick 和 De Temple [17] 首次通过在 Al x Ga 1 − x As 层中生长不对称 Al 成分梯度来破坏中心对称性,在多层结构中观察到了设计的二阶光学非线性。后续实验在 III-V 半导体 QW 中设计了光学非线性,例如可调谐发射器 [2,15,18] 和光开关设备。[6] 然而,它们的二阶非线性磁化率 MQW (2) χ 的实验值尚未见报道。最近人们对在复杂 QW 系统中设计大型光学二阶非线性的兴趣 [19–21] 促使及时系统地研究量化 χ (2)。工程设计中的挑战之一
抽象的客观定量敏感性映射(QSM)提供了使用磁共振(MR)相测量的组织磁化率的估计。通过数值求解逆源效应问题来估计MR相图像中测得的磁场分布/局部组织场(效应)的组织磁化率(源)。本研究旨在开发一个有效的基于模型的深度学习框架来解决QSM的反问题。材料和方法这项工作提出了带有可学习的范围参数P的schatten p-norm驱动模型的深度学习框架,以适应数据。与其他基于模型的体系结构相比,该结构强制执行l 2 -norm或l 1 -norm,而拟议的方法可以在可训练的正规机构上强制执行任何p -norm(0 结果将所提出的方法与基于深度学习的方法(例如QSMNET)和基于模型的深度学习方法进行了比较,例如学习的近端卷积神经网络(LPCNN)。 使用具有不同采集方案和临床条件的77次成像体积进行的重建,例如出血和多发性巩膜,表明所提出的方法在定量优点方面以显着的优势超出了现有的最新方法。 结论拟议的Spinet-QSM在高频误差规范(HFEN)和归一化的根平方误差(NRMSE)方面,至少提高了至少5%的持续改善,而与其他QSM重建方法相比,使用有限的训练数据。结果将所提出的方法与基于深度学习的方法(例如QSMNET)和基于模型的深度学习方法进行了比较,例如学习的近端卷积神经网络(LPCNN)。使用具有不同采集方案和临床条件的77次成像体积进行的重建,例如出血和多发性巩膜,表明所提出的方法在定量优点方面以显着的优势超出了现有的最新方法。结论拟议的Spinet-QSM在高频误差规范(HFEN)和归一化的根平方误差(NRMSE)方面,至少提高了至少5%的持续改善,而与其他QSM重建方法相比,使用有限的训练数据。
(0) m AT = + 数据。(b) 施加磁场 H =1 kOe 测得的沿 ab 平面 ab(红色)和 c 轴 c(蓝色)的磁化率与 T 的依赖关系。(c) 指定温度下的横向磁阻 MR ab;(d) 使用图 (c) 中的数据生成的科勒缩放图。实线是科勒形式与数据的拟合。(e) 在 2 K 下,对于 H // c 和 H // ab 之间的各种角度(角度在插图中定义),最高 35 T 的 MR ab 。红线表示 10 T 以上的数据与幂律 MR H 的拟合。插图:指数 κ 的角度依赖性。(f) 图中所示温度下测得的霍尔电阻率 (ρ H ) 和相应的方程 (2) 拟合值(红线)。插图:25 K 时的霍尔电阻率显示符号变化。
摘要:研究了 LiCuFe 2 (VO 4 ) 3 的磁化率、比热容、介电常数和电极化。在零磁场下观察到 T N1 ∼ 9.95 K 和 T N2 ∼ 8.17 K 处的两个连续反铁磁转变。虽然在 T N1 处可以清楚地识别出一个介电峰,但测量的热电电流在 T N1 处也呈现出一个尖锐的峰,暗示与磁相关的铁电性。有趣的是,在 T N2 附近观察到另一个具有相反信号的热电峰,导致 T N2 以下的电极化消失。此外,电极化在外部磁场下被显著抑制,证明显著的磁电效应。这些结果表明,LiCuFe 2 (VO 4 ) 3 中的磁结构与铁电性之间存在着本质相关性,值得进一步研究其潜在机制。■ 简介
使用ARC熔化方法合成多晶Zr 5 Al 4。粉末X射线衍射证实了具有晶格参数的Ti 5 Ga 4型(P6 3 /MCM)的先前报道的晶体结构:A = 8.4312(6)Å,C = 5.7752(8)Å。电阻率和低温磁化率研究表明,Zr 5 Al 4在2 K以下表现出超导行为。归一化的热容量在t c = 1.82 K,ΔC/γtc = 1.41时,证实了散装超导性。Sommerfeld系数γ= 29.4 MJ mol -1 K -2和Debye温度d = 347 K,通过拟合低温热容量数据获得。电子偶联强度λEL-PH = 0.48,并且估计的上部临界场μ0H C2(0)= 1.09 t(脏极限)表明Zr 5 Al 4是弱耦合的II型超导体。第一原理计算显示费米能量附近的Van Hove奇异性存在。
该部门的推力区域是材料科学和固态物理学。以下是该部门各个研究小组进行的研究领域。a)铁四和多铁材料b)纳米材料c)聚合物电解质d)显示材料:e)玻璃f)薄膜和气体传感器材料开发了主要的研究基础设施:1。ftir bruker 2。UV-VIS分光光度计Shimodzu 3。扫描电子显微镜(Zeiss)4。X射线衍射仪(粉末)XPERT加5。差分扫描比色表(DSC)Netzsch 6。热重量分析仪(TGA)7。Spectro-Fluoro光度计RF 6 9.原子力显微镜(AFM)Shimodzu 10。RF磁控溅射单元ENI,辉瑞11。高真空和UHV系统(本地)12。自旋涂料单元(本地)13。高温真空炉14。p-e循环示踪海洋印度15。磁化率