现在已广泛认识到,Ca2+代表了负责调节各种细胞过程(例如增殖,分化,迁移和死亡)的重要且普遍的Messenger(1)。此外,已经将钙信号畸变确定为有助于肿瘤发展和进展的参数之一。虽然多运动泛滥的研究已经通过强调多个致癌驱动因素和癌症标志来确定并提高了我们对癌症分子生物学的理解(2,3),但了解如何在肿瘤细胞中调节钙浓度仍然是一个有趣的挑战。实际上,研究表明,一方面,细胞内Ca2+水平的失调与肿瘤的启动和进展有关,另一方面,Ca2+信号传导通过增殖,凋亡,凋亡,和免疫感染来调节肿瘤微环境(4)。这些多重作用使得无法精确地确定钙信号的功能障碍是肿瘤的原因还是其他致癌性变化的结果。因此,需要对CA2+泵,Ca2+依赖性激酶,交换器和通道(包括电压门控,CRAC,ORAI,ORAI,stim,MUC和TRP)进行进一步的研究,以抑制肿瘤的发展并增强抗癌免疫力。同意,Sala等。证明了由Ether A-Gò-Gò-Gò-与相关基因1(ERG1)的影响选择和淋巴细胞的分化途径介导的Ca2+水平的调节。迄今为止,几个发现强调了受通道调节的胞质Ca2+信号的作用,在刺激CD8+淋巴细胞和天然杀伤细胞的增殖和成熟中(5),在促进免疫细胞迁移和趋化性(6)中的作用(5),以及在促进免疫杀伤和物质杀伤(7)中的作用(6)。尤其是作者强调了ERG1活性在B和T细胞受体激活过程中实现Ca2+插入所必需的足够的电化学梯度的重要性。失调会导致CA2+信号的改变,该信号允许错误选择增殖的肿瘤淋巴样克隆。与这些结果一致,已证明在白血病中发现了ERG1的异常表达,并且与化学抗性和较差的预后有关(8)。Yang等人也强调了Ca2+水平对T效应淋巴细胞存活的重要性。谁描述了Ca2+进口到线粒体的基本作用,由
1南丹麦大学生物学系,丹麦丹麦大学,2 SDU气候集群,南部丹麦大学,丹麦大学,丹麦,丹麦,3个Institut dessiments et siptass et limancers et la mer,Nantes Uniessite´,Isomer,Nantes,Nantes,法国,法国4 Ecomare,Cesam环境和海洋研究中心,港口,港口,港口,港口5雅典哈罗科皮奥大学,希腊卡利西亚,6地球信息科学与地球观察学院(ITC),特威特大学,埃斯切德大学,荷兰,荷兰第7系,纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市的诺德兰研究所的纽约市纽约市纽约市的纽约市纽约市纽约市纽约市纽约市的纽约市纽约市纽约市纽约市,一家Espaces et Socie´te´s 6590 CNR,勒芒大学,法国勒芒
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
糖尿病会影响全球4.25亿个人,预计在未来20年中,数字将增加到6亿人(1)。在1型糖尿病(T1D)中,患者经历胰岛素产生降低引起的胰岛素缺乏症,而在2型糖尿病(T2D)中,患者经历了胰岛素抵抗(IR),通常与肥胖有关(2)。导致IR发展的主要因素是增加氧化应激,高血糖和脂质水平升高(3)。尽管有助于控制血糖水平的疗法进步,但心血管并发症仍然是该人群发病率和死亡率的主要原因(2、4、5)。在心脏中,IR会导致钙处理,线粒体功能障碍和代谢不足的失调,导致一系列病理,其中包括心肌 - 心脏情感功能障碍,舒张性障碍功能障碍,心肌细胞死亡,心肌死亡和内膜骨化(6,7,7,7,7,7,7)。与IR相关的血管事件通常与高血压和增强的血栓形成环境有关(8、9)。虽然阻塞性血凝块可以导致心肌梗塞,脑血管事件或关键的肢体缺血,并且由于血小板与止血蛋白之间的复杂相互作用而发生(10)。在这种高度异质的人群中,发展此类并发症的风险是可变的,并取决于一系列因素,包括年龄,糖尿病持续时间,血糖控制和IR。在内分泌学领域的这一研究主题中,我们介绍了8篇文章,旨在探索IR与心血管健康之间的关系。他等人。动脉硬化是糖尿病的众所周知的并发症(11)。检查了放射线间脂肪组织(IMAT)分析是否可以用作指示T2D患者动脉硬化的诊断措施。总共包括549例新诊断的T2D患者,并使用颈动脉斑块负担来表明动脉粥样硬化。构建了三个模型以评估动脉粥样硬化的风险:临床模型,一个放射组学模型(基于胸部CT图像的IMAT分析)和临床放射线组合组合模型(一种整合临床放射学特征的模型)。使用曲线和DELONG测试下的区域比较了这三个模型的性能。临床 - 放射线组合模型和放射线学模型表明,在表明动脉粥样硬化方面的性能更好。作者
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
微纳器件与技术研究是信息科学与生命科学交叉领域的重要前沿,在神经科学和医学应用领域具有重要的战略意义和良好的应用前景(Liu et al.,2020)。随着微纳加工技术的快速进步,创新的智能化、微型化、集成化器件不断涌现,在检测和调控方面具有独特的优势。值得注意的是,将微纳器件与神经科学和临床医学相结合,可以解决科学前沿问题并培育新的研究热点。癫痫是一种主要的神经系统疾病,影响着全球超过六千万人,严重影响他们的健康和生活质量(Bernhardt et al.,2019)。研究相关神经回路内神经活动的变化对阐明癫痫的发病机制和治疗方法至关重要。可植入微电极阵列能够高质量地记录信号和解码神经信息,在脑机接口方面具有巨大的应用潜力(Wang 等人,2024 年)。Han 等人设计并制造了一种可植入微电极阵列,专门用于癫痫大鼠基底神经节纹状体区域的电生理信号检测和分析。对癫痫发作期间纹状体的电生理数据的分析为了解颞叶癫痫发作初期和潜伏期期间纹状体神经活动的动态过程提供了宝贵的见解。这一理解有助于揭示癫痫的神经机制,同时促进相关治疗方法的进步。疼痛是一种情绪和不愉快的感官体验,会对生活和工作的各个方面产生重大的生理和心理影响。纳米技术的最新进展为利用各种纳米材料和靶向表面的创新止痛策略铺平了道路
在不懈地追求可持续的农业实践时,社会已经凝视着替代合成化肥的替代方案,并认识到它们对它们施加的显着环境影响。在众多替代方案中,使用促进植物生长的细菌(PGPB)的使用已成为一种有前途的解决方案,鼓励以既有效又具有环境可持续性的方式彻底改变植物营养的潜力。植物与PGPB之间的相互作用是自然界的奇观,其中包括各种相互作用,这些相互作用远远超出了简单的营养提供。这些显着的微生物通过利用不可用的营养素并合成必需的植物激素的能力,对植物代谢产生了深远的影响,即使在具有挑战性的条件下,增强了生长和韧性。挑战的核心是植物 - 微生物相互作用的神秘性质,充满了使甚至最经验丰富的研究人员混淆的复杂性。寻求阐明各种环境条件的植物与微生物之间的动态相互作用仍然是一项艰巨的任务,但对于释放PGPB在可持续农业中的全部潜力至关重要的任务。在他们对知识的不懈追求中,研究人员利用了奥米奇技术的力量破译了基于植物与细菌之间共生关系的生化,遗传,基因组和分子相互作用的复杂网络。,尽管取得了进展,但许多谜团仍未解决,令人着迷的发现正在等待探索。在我们坚定地致力于提高作物改善和促进可持续农业的承诺中,我们很自豪地提出一个研究主题,致力于揭开植物 - 细菌关系的奥秘。当前的研究主题包括一份综述,一份简短的研究报告文章和10项针对(i)选择有效的微生物菌株的原始研究及其在减轻非生物压力的潜力方面的表征; (ii)利用有效的微生物物种增强
多发性硬化症(MS)是中枢神经系统(CNS)的自身免疫性疾病,没有明确的触发因素。然而,流行病学研究表明,遗传性易感性个体中的Epstein-Barr病毒(EBV)感染(EBV)和低维生素D(VIT D)水平等环境因素是重要的危险因素。一个主要建议是,EBV通过分子模拟物等机制触发MS,在该机制中激活的自动反应性B和T淋巴细胞错误地靶向自我抗原。与其他危险因素,低血清VIT D水平,VIT D受体的遗传多态性以及北半球国家的MS发病率更高,这表明VIT D在MS病理学中也起着作用。维生素D,以其神经保护作用和免疫调节作用而闻名,有助于维持促炎和抗炎性免疫细胞之间的平衡。研究和正在进行的临床试验表明,次动物症D与MS的风险增加有关,而VIT D补充剂可以帮助降低疾病的严重程度。此外,次动物症D也与免疫系统失调和增加MS的风险增加有关。本综述探讨了这三个良好认可的危险因素如何在MS的发病机理中相互作用 - EBV感染,次动物症D和失调的免疫系统 - 相互作用。了解这些相互作用及其后果可以为治疗这种毁灭性疾病的新型治疗方法提供新的见解。
青春期的特征是童年的终点和青春期的开始。所有生理和神经系统变化代表了人类发展的关键阶段,从童年到成年。在此阶段,随着它们成熟的各种人类系统,它们之间存在着重要而重要的生物学相互作用。通过激素,物理和神经过程对不同生物系统的和谐功能对于人类发展的这一阶段至关重要。这些生物系统的功能取决于个人的遗传遗产和他们作为青少年的社会生活(例如,家庭支持,社会经济地位和健康的行为)(1-4)。在女孩中,青春期的发作开始于11岁左右,而在男孩中,它发生在12岁左右。在这段时间里,发生了第一次解剖转化,例如女孩的乳腺发育和男孩的睾丸体积增加(4)。下丘脑 - 垂体 - 基达轴在青春期期间经历了显着的激活和成熟,导致性激素分泌,包括睾丸激素和雌激素。这些激素变化影响了继发性特征,生殖器官以及整体身体生长和成熟的发展(5)。在青春期,下丘脑是大脑的一个区域,开始释放促性腺激素释放激素(GNRH),该激素(GNRH)刺激了垂体以释放两种重要的激素:叶酸激素(LH)和刺激性激素(fsh)(fsh)(6)。早期的青春期这些激素作用于雌性或雄性睾丸的卵巢作用,从而触发性激素的产生 - 雌性的雌激素和男性的睾丸激素(6)。青春期时期取决于遗传学和社会因素,例如营养,社会经济地位和心理特征(4,5)。这一时期是由激素浮动和遗传因素驱动的,有助于在青春期观察到的认知和行为转化,通常发生在性腺后2 - 4年后(4,7)。大脑中的结构和功能重组会影响负责情绪调节,社会认知和决策的领域。