引用:VerónicaBenavidezMagister。“”学习镜:镜像神经元如何塑造我们的学习能力”。ACTA科学神经病学7.4(2024):25-38。
无机砷在细胞水平上诱发神经毒性的机制尚不清楚。在斑马鱼中,不同浓度的无机砷均有致畸作用。在这里,我们使用了类似浓度的无机砷来评估其对特定神经元类型的影响。受精后 5 小时 (hpf) 的斑马鱼胚胎暴露于亚砷酸钠中,在 72 hpf 幼虫中诱发发育毒性(体长缩短),浓度从 300 mg/L 开始。在 500 mg/L 亚砷酸钠下检测到死亡或明显的形态畸形。虽然 200 mg/L 亚砷酸钠诱导酪氨酸羟化酶阳性(多巴胺能)神经元的发育,但对 5-羟色胺(血清素能)神经元的发育没有显著影响。亚砷酸钠降低了乙酰胆碱酯酶活性。在hb9-GFP转基因幼鱼中,200和400mg/L亚砷酸钠均在脊髓中产生了多余的运动神经元。通过Gant61抑制运动神经元发育所必需的Sonic Hedgehog(Shh)通路,可以阻止亚砷酸钠诱导的多余运动神经元发育。电感耦合等离子体质谱(ICP-MS)分析表明,在200mg/L和400mg/L亚砷酸钠处理下,每只幼鱼平均砷含量分别为387.8pg和847.5pg。数据首次表明无机砷改变斑马鱼幼鱼多巴胺能神经元和运动神经元的发育,后者是通过Shh通路发生的。这些结果可能有助于理解为什么接触砷的人群会患上精神疾病和运动神经元疾病,并且 Shh 可能潜在地充当砷毒性的血浆生物标志物。
反映神经元被认为是与他人建立联系的能力,而不是有意识的水平,通过模仿,理解和提供帮助来学习;共情。这些连接不是直接的,而是根据一个人的经验进行介导的[1]。镜像神经元在儿童时期很重要,它们对于学习和获取新技能非常重要。他们参与思考,计划,控制和记忆。如果孩子观察到动作,镜像神经元将激活并形成新的神经联系,就好像他或她亲自进行了动作一样。镜像神经元的有效功能可在任何领域,更大的情绪智力和更高的同理心[1]带来出色的发展。
本文回顾了Cajal神经元理论(神经元学说)的重要性以及从该理论中出现的大脑可塑性观念的起源和重要性。我们首先评论了Cajal的主要发现,并确认了他的神经学说:染色技术的改进,他的形态学定律方法,动态极化,神经发生和神经营养理论的概念,他对神经细胞的首次发现,作为一种独立细胞作为独立细胞,他对退化和对抗的研究和反击和反击的研究。第二,我们回顾了Cajal关于大脑可塑性及其出版年份的观念,最终将重点放在有关可塑性及其概念含义的起源以及Cajal提议的原始性的辩论上,与当时的其他作者相比。
致谢:这项工作由欧洲地区发展基金(ERDF),通过2020 Centro区域运营计划以及竞争的2020年竞争 - 竞争力和国际化运营计划以及葡萄牙国家基金通过FCT,项目下的Project [s]:expl/bia -bia -bqm/1361/2021/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020年。PAS GRAS项目已从欧盟的地平线欧洲获得资金。H. Gerardo(SFRH/BD/147316/2019和COVID/BD/153559/2024)和J. Teixeira(2020.01560.Ceecind)承认FCT,I.P。研究合同。
秀丽隐杆线虫通常用于研究神经活动,因为 1) 它的基因组和连接组已经得到充分研究,只有 302 个神经元;2) 它的透明度使它能够捕捉详细的神经活动;3) 它具有自体受精的能力,这使得维持基因相同的秀丽隐杆线虫种群成为可能。分析秀丽隐杆线虫的图像具有将特定神经元的活动与行为或环境刺激联系起来的潜力。然而,由于难以命名这些图像中的特定神经元,因此产生此类见解受到限制。当前的方法依赖于手动分类,这既耗时又容易出错。可以利用 ZephIR 等神经元跟踪系统来帮助执行标记。但是,以这种方式使用跟踪系统需要每 11 分钟捕获的图像额外进行 45 分钟的手动标记,才能跟踪特定的神经元。在本研究中,我们开发了一种基于神经网络的分类器,可以自动标记秀丽隐杆线虫中的感觉神经元,准确率高达 91.61%。这是通过使用迭代的、基于地标的神经元识别过程实现的,旨在模仿手动注释程序。
V. Schmidt 2,3,J.坦克1和J. Jordan 1 1 1 1德国航空航天中心(DLR)的航空航天医学研究所,Linder Hoehe,51147德国科隆。laura.deboni@dlr.de。2 Institute of Innate Immunity, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany 3 Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg Campus 1, 53127 Bonn, Germany 4 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street墨尔本,3000,澳大利亚。5内科学系,科隆大学心脏病学,血管病学和重症监护室心脏病学系,德国50923,德国科隆大学。简介与太空飞行相关的神经 - 眼综合征(SAN)威胁到长期空间任务期间的眼部和神经系统健康。的确,包括神经丝轻链(NFL)和神经胶质原纤维酸性蛋白(GFAP)的循环神经元和神经胶质生物标志物在空间中平均增加了。此类生物标志物可能具有用于诊断目的的实用性,并在陆地模型中进行不对的对策测试。因此,我们在30天的6°头向下倾斜床休息(HDT)进行了临床和血液生物标志物分析,该床(HDT)产生了头脑流体移位和类似于SANS的视盘水肿。我们检查了SANS研究参与者的临床神经学变化(颅神经,运动,反射和感觉检查,协调和平衡评估),并收集了EDTA血浆和血清样本(3个时间点:基线,HDT和HDT和恢复)。我们使用Quanterix simoa分析仪分析了神经元和神经胶质生物标志物(TAU,GFAP,淀粉样蛋白-Beta 40(Aβ40),淀粉样蛋白β42(Aβ40),NFL)。参与者已被分配给四组,所有这些都受到严格的30天6°倾斜的约束:
我们研究了受人脑皮质的连接结构启发的神经元网络模型的同步属性。神经元模型由网络组成组成,其中每个网络都是无标度网络,它们之间的连接取自LO和协作者提出的人类连接矩阵[J. J.神经科学30,16876(2010)]。神经动力学由rulkov二维离散时间图控制,神经元与不同皮质区域之间的耦合通过化学突触发生。单个神经元以特征阶段和频率散发爆发活动。爆发同步,并且可能与某些病理节奏的存在有关。爆发同步的总或部分抑制已被指向深度大脑刺激技术的基础动力学机制,以减轻这种病理。在这项工作中,通过在神经元网络的某些区域中使用外部信号应用外部信号来采用同步抑制技术。我们的结果表明,同步的抑制取决于应用信号的时间延迟和强度的值。
摘要:亨廷顿氏病(HD)是一种罕见但进行性和毁灭性神经退行性疾病,其特征是非自愿运动,认知能力下降,执行功能障碍以及诸如焦虑和抑郁之类的神经精神疾病。它遵循常染色体显性遗传模式。因此,有一个患有突变的亨廷顿(MHTT)基因的父母的孩子有50%的机会患上这种疾病。由于HTT蛋白参与了许多关键细胞过程,包括神经发生,脑发育,能量代谢,转录调节,突触活性,囊泡传递,细胞信号传导和自噬,其异常聚集物导致许多细胞途径和神经延展的扰动。必需的重金属在低浓度下至关重要。但是,在较高浓度下,它们可以通过破坏神经神经神经神经胶质的通信和/或引起营养不良(肠道菌群中的扰动,GM)来加剧HD,这两种都会导致神经蛋白流经肿瘤和进一步的神经变性。在这里,我们详细讨论了铁,锰和铜与神经胶质 - 神经元通信和通用汽车的相互作用,并指出了这些知识如何为新一代HD中新一代疾病改良疗法的发展铺平道路。
感觉神经元感知致病性浸润,以告知宿主38防御的免疫协调。然而,感官神经元免疫相互作用主要显示为39驱动先天免疫反应。体内记忆,无论是保护性还是破坏性,在生命的早期就获得了40次获得,如早期暴露于链球菌和过敏性疾病发作所证明的那样。41我们的研究进一步定义了感觉神经元对肺部体液免疫的影响。42使用肺炎链球菌的鼠模型前暴露和感染,以及43种过敏性哮喘的模型,我们表明B细胞和血浆细胞44募集和抗体产生需要感觉神经元。对肺炎链球菌的响应,感觉神经元耗竭45导致细菌负担更大,B细胞群体减少,IgG释放和中性粒细胞46刺激。相反,在过敏原诱导的气道炎症过程中,感觉神经元耗竭降低了B细胞群体,IgE和47个哮喘特征。在每个模型中释放的感觉神经元48神经肽都不同。有细菌感染,优先释放了血管活性肠49多肽(VIP),而物质P则释放出对哮喘的反应50。将VIP施用到感官神经元缺失的小鼠中抑制了细菌51负担并增加了IgG水平,而VIP1R缺乏症增加了对细菌52感染的敏感性。用物质P处理的感官神经元缺乏的小鼠增加了IgE和哮喘,而物质P遗传消融导致IgE钝化,类似于感觉神经元缺乏的54次哮喘小鼠。58这些数据表明,免疫原差异刺激感觉55神经元释放特定的神经肽,这些神经肽是特异性靶向B细胞的。靶向感官56神经元可能会为57和/或加重的体液免疫提供的疾病提供替代治疗途径。