抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
- 神经元的网络:神经元网络如何布置在大脑中;人造网络的常见体系结构。编码和表示:如何在神经网络中表示信息;放置编码;分布式表示。- 学习和记忆:生物神经元中的可塑性;记忆理论;在人造网络中学习。- 视图:人类视觉系统的结构;视网膜,LGN和皮质加工的功能;视觉的人工网络模型。
图 1:在目标导向动作准备过程中对人类 CS 输入输出的评估。a、皮质脊髓 (CS) 输入输出 104 可以表现出从基线静息到准备状态的加法和/或乘法调节。b、目标导向动作准备 105 通过需要左 (L) 或右 (R) 反应的指示延迟双选反应时间任务进行评估。大多数试验都是 go 试验 106,在此期间命令性刺激出现直到记录反应时间 (RT) 或 0.8 秒过去。包括一组 catch 试验 (~8%) 107,以防止参与者预测命令性刺激的开始。 c ,实验分为手间任务和 108 手内任务,当目标运动表征处于基线状态以及被选中、未被选中或与动作准备无关时,可使用单脉冲经颅磁刺激 109 (TMS) 评估左手食指的 CS 输出。此处,输入是相对于参与者的静息运动阈值 (%RMT) 的 TMS 强度,输出是随后的运动诱发电位 (MEP) 的幅度 111。d ,CS 输入输出曲线来自任务前的静息状态 MEP 数据 (n = 39),并使用三参数玻尔兹曼函数与基于人群的非线性混合效应模型进行拟合 112。绿点和误差线表示 113 每个 TMS 强度下的平均 MEP 幅度 ± 标准差。虚线灰色线表示参数估计值。114
推理和问答作为人类的基本认知功能,一直是人工智能面临的重大障碍。虽然大型语言模型(LLM)取得了显著的成功,但将外显记忆与结构化推理能力相结合仍然是一个持续的难题。可区分神经计算机(DNC)模型虽然在一定程度上解决了这些问题,但仍然面临着算法复杂度高、收敛速度慢、鲁棒性有限等挑战。受大脑学习和记忆机制的启发,本文提出了一种基于记忆转换的可区分神经计算机(MT-DNC)模型。MT-DNC 在 DNC 框架内整合了工作记忆和长期记忆,使这些记忆系统之间能够自主转换获得的经验。这有助于有效地提取知识并增强推理能力。实验结果
• 冯·诺依曼的讲稿。• 比较大脑和数字计算机的架构。• 神经元如何处理精度问题。• 记忆存储的根本区别。
摘要 本文主要研究利用信息技术进行脑机交互,利用脑电图(EEG)信号检测大脑活动模式。在实验中,我们使用了机器学习方法,即以下分类器:Bagging、Boosting、Nearest Neighbors 和 Support Vector。实验从手指运动任务期间对 EEG 信号的真实观察开始。我们使用 10 倍交叉验证来评估每个分类器的性能,包括准确性和稳健性。结果发现,支持向量分类器在分类器中表现出最高的稳定性。实验的主要目标是确定分类器的稳健性的重要性,特别是在医疗应用中。总之,该实验有助于脑机交互领域的发展以及在医疗保健和其他地方具有实际应用的稳健神经接口技术的开发。
•我们在AI中看到的问题已经存在 - 偏见,数据等问题等是人类已经存在的当前问题。AI迫使我们考虑这些并将其冲洗掉。•将辅助AI采用公共服务的主要障碍是(缺乏)解释性和数字素养 - 公共信任以及基于AI的决策对特定人群的影响加剧。•支持警察劳动力,需要适合21世纪的正式培训和教育评论,遇到培训能力问题,并带来了他们内部缺失的专业知识。•公众与NHS和医疗保健有情感上的联系 - 在这种护理的情况下,AI的引入可能会感到不合适。然而,行政任务的自动化可能会减轻工作量压力,并对NHS员工的福祉产生积极影响。•决策者必须记住,并非每个问题都是AI问题,而不是每个解决方案都是AI解决方案 - 必须考虑个人情况。•必须通过变更,集中标准制定和关于数字素养的公共教育的跨政府要求确保公平访问服务。•使用AI(环境,人类)的成本 - 部署应伴随着这些费用的陈述,以供考虑到任何生产力提高。•可以激励公司开发AI,以反映成果中的内在人类价值观,而不是传统的生产力措施。
对财政和监管杠杆的任何更改都必须是一系列措施的一部分,这些措施试图推动整个产品生命周期和项目生命周期的变化 - 即减少拆除,可回收材料的保证,解构设计。数字工具和系统(例如废物跟踪)必须坚固,以确保我们采取准确的信息(并保护欺诈。)将来,这可能意味着我们拥有足够准确的材料流数据来使用因果循环图,以更好地了解系统将如何响应诸如垃圾填埋场之类的政策变化 - 以确定风险,机会并更好地准备变革。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。