应将通讯发送到Junho Jeong:yanyenli@dongguk.edu文章INFO杂志机器和计算杂志(http://anapub.co.co.ke/journals/jmc/jmc/jmc.html)doi:修订表格2022年12月18日; 2022年12月30日接受。2023年4月5日在线可用。©2023作者。由Anapub出版物出版。这是CC BY-NC-ND许可证下的开放访问文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)摘要 - 这项研究调查了在通信网络中使用神经计算技术的使用,并根据错误率,延迟和吞吐量评估其性能。结果表明,不同的神经计算技术,例如人工神经网络(ANN),卷积神经网络(CNN),复发性神经网络(RNN),长期短期记忆(LSTM)和生成的对抗网络(GAN)在提高绩效方面具有不同的权衡。技术的选择将基于应用程序的特定要求。研究还评估了不同通信网络体系结构的相对性能,并确定了与在通信网络中应用不同技术相关的权衡和限制。研究表明,需要进一步的研究来探索技术的使用,例如深度强化学习;在通信网络中,并研究如何使用技术的使用来提高通信网络的安全性和鲁棒性。关键字 - 人工神经网络(ANN),卷积神经网络(CNN),经常性神经网络(RNN),长期短期记忆(LSTM),生成对抗网络(GANS)。
主要关键词