Loading...
机构名称:
¥ 2.0

摘要:脑电图 (EEG) 记录有助于解码张开/闭合手部的动作准备。为此,通过波束形成解决逆问题,提取运动皮层中的皮层源信号(相对于运动开始提前 1 秒)。EEG 源时期用作源时间图输入到自定义深度卷积神经网络 (CNN),该神经网络经过训练可执行双向分类任务:手闭合前 (HC) 与静息状态 (RE) 以及手张开前 (HO) 与 RE。虽然深度 CNN 效果很好(HC 与 RE 的准确率高达 89.65+-5.29%,HO 与 RE 的准确率高达 90.50+-5.35%),但在本研究中,我们探索了深度 CNN 的可解释性,以进一步了解手部亚运动准备过程中皮层源的隐藏激活机制。具体来说,进行遮挡敏感性分析以调查哪个皮质区域最好参与分类过程。实验结果显示,受试者的皮质激活具有反复出现的空间模式;特别是靠近纵向裂隙的中央区域以及运动前区和初级运动皮质的右颞区似乎参与程度很高。这些发现鼓励深入研究似乎在手的张开/闭合准备中发挥关键作用的皮质区域。

神经计算与应用

神经计算与应用PDF文件第1页

神经计算与应用PDF文件第2页

神经计算与应用PDF文件第3页

神经计算与应用PDF文件第4页

神经计算与应用PDF文件第5页