摘要:癫痫尖峰是脑电图中互补的信息来源,可以诊断和定位癫痫的起源。但是,不仅对脑电图劳动的视觉检查不仅是耗时,而且耗时且容易出现人为错误,而且还需要长期培训才能获得识别癫痫释放所需的技能水平。因此,采用了计算机辅助方法,目的是节省时间并提高检测和来源定位精度。由于形态相似,可能被混淆为癫痫尖峰的最重要伪影之一是眼睛眨眼。只有少数研究考虑在检测前去除此伪像,并且大多数使用视觉检查或计算机辅助方法需要专家监督。因此,在本文中,开发了一个无监督和基于脑电图的系统,具有嵌入式眼睛眨眼伪影的去除剂,以检测癫痫尖峰。所提出的系统包括三个阶段:眼睛眨眼伪影,特征提取和分类。小波变换均用于移除和特征提取步骤,以及用于分类目的的自适应神经模糊推理系统。使用公开可用的脑电图数据集对所提出的方法进行了验证。与类似的研究相比,结果显示了使用低分辨率EEG使用低分辨率EEG,计算复杂性,最高灵敏度和较小的人类相互作用的低分辨率EEG检测癫痫尖峰的效率。此外,由于癫痫尖峰检测是癫痫源定位的重要组成部分,因此该算法可用于基于脑电图的癫痫病前术前评估。
主要关键词