摘要。在能源组合中可再生能源的份额不断增长,电力市场的自由化极大地影响了发电机的运行。从基于化石燃料的能源系统到可再生能源的过渡将大大改变能源市场,从而为储能系统提供重要的机会。在接下来的几年中,预计将预见到大量存储容量被整合到电网中,以刮去需求峰值,减轻价格波动并为电网提供服务。在这种情况下,要正确管理这些关键技术,从而保证操作的经济可行性,必须正确地优化调度并定义最佳计划。本文考虑了电池能量存储(BES)来研究存储技术的调度优化问题。BES的完整模型是开发的,特别是考虑到DOD(排出深度)对循环总数的影响,这显着影响降解,以及由于joule效应的损失的影响,导致电流率对总效率的影响。实施的优化基于混合整数线性编程方法(MILP)方法,收费状态(SOC)的离散化以及额定容量的持续更新,直到达到最大可允许的淡入淡出为止。不同的方案,显示了拟议方法在最大化净运营利润或根据市场盈利能力最小化损失的有效性。
纠缠是量子力学的定义特征之一,也是许多量子信息协议的基本资源 [1]。许多理论和实验研究都致力于研究一对二能级系统(量子比特)的纠缠。高维(量子比特)系统的二分纠缠研究较少。然而,从根本上讲,更好地理解纠缠量子比特可以澄清量子物理的一些微妙之处。例如,与量子比特相比,量子比特被证明可以增强非经典效应,因为它们允许更强的局部现实主义违反 [2, 3]。此外,从更务实的角度来看,高维量子态比简单量子比特具有更高的信息容量,并允许量子密钥分发协议容忍更高的噪声阈值 [4]。在光子系统中,(纠缠)量子比特被编码在高维(最终是无限维)希尔伯特空间的有限维子空间中。这可以通过使用空间模式(例如轨道角动量 [5, 6, 7])或离散化连续自由度(例如频率 [8, 9] 或时间 [10, 11])来实现。此外,这种最初有限维的状态可以在其动态演化过程中扩展到整个希尔伯特空间。例如,当光子轨道角动量携带状态 [12] 通过自由空间 [13, 14, 15, 16] 或光纤 [17] 传输时,就是这种情况。然而,输出状态通常被投射到
不变流形的直接参数化方法是一种模型订购降低技术,可以应用于PDES所描述的非线性系统和离散化的非线性系统,例如具有有限元过程,以得出有效的还原级模型(ROM)。在非线性振动中,它已经应用于自主和非自治问题,以提出可以使用几何非线性计算结构的主链和频率响应曲线的ROM。虽然先前的发展使用一阶扩展来应对非自主术语,但通过提出不同的处理,此假设在这里放松了这个假设。关键思想是通过与强迫相关的其他条目扩大参数坐标的尺寸。通过这种启动假设得出了一种新的算法,并且作为关键的结果,可以得出可以得出通过同源方程式出现的共振关系,涉及强迫频率的多次出现,表明有了这一新的开发,可以得出具有超旋转共振的系统的ROM,可以得出。该方法已在涉及梁和拱门的学术测试案例上实施和验证。在数值上证明,该方法为涉及3:1和2:1超谐音共振的问题生成有效的ROM,以及对于系统上一阶截断的系统的融合结果,在非自治术语上显示出明显的限制。
通过 QASM 语言,这是 IBM Q Experience 团队发明的一种用于创建量子电路的语言。另一方面,第二种方法是编写 Python 代码并使用名为 QISKit [32] 的 Python 软件开发工具包 (SDK) 运行它们,它适用于所有类型的算法。因此,我们在本文中展示的工作是使用 QISKit 进行的。可通过云端公开访问的量子设备分别由 IBM Q 5 Yorktown (ibmqx2) 、IBM Q Burlington 、IBM Q 5 London 、IBM Q Essex 、IBM Q Vigo 和 IBM Q Ourense(六个 5 量子比特设备)以及 IBM Q 16 Melbourne 和 IBM Q Armonk(16 量子比特和 1 量子比特设备)表示。用于模拟的经典后端称为 IBMQ QASM 模拟器。所有后端都与一组由单量子比特旋转和相移门组成的量子门一起工作。所有其他单量子比特门(如 X、S、R z 等)一般都是由这三个门的序列构成的,它们与 CNOT 一起构成量子门的通用集。除了量子比特的数量之外,所提到的量子设备在量子比特连接或拓扑方面也有所不同,IBM Q Experience 将其称为设备的耦合图 [33]。在本文中,我们修改并在 IBM 量子计算机上实现了参考文献 [34] 中研究的量子算法,使用相位估计技术找到有限方阱势一维薛定谔方程的基态和第一激发态的能量特征值。我们使用试验波函数作为初始状态,并在位置和动量空间中将其离散化。我们还在希尔伯特空间中构建了时间演化矩阵,其中定义了计算基向量(即量子比特态)。然后,我们将时间演化电路应用于最初准备的寄存器,并使用相位估计方法获得包含能量的相位。我们表明,所提出的算法可以以合理的误差实现预期结果。除了众所周知的量子相位估计方案外,我们还讨论了迭代相位估计方法的实现,以减少电路尺寸和量子比特数,从而有效利用 IBM 量子计算资源。最重要的是,为了充分利用 5 量子比特 IBM 后端,我们通过选择迭代相位估计技术将电路尺寸从文献 [34] 中使用的 8 个量子比特缩短到 5 个。本文组织如下。第 3 节描述了基于相位估计方法的量子算法的步骤。要执行数字量子模拟,我们需要设计时间演化算子来找到系统的能量特征值。此外,坐标应该离散化,初始波函数在网格点上近似。我们还解释了本文使用的两种相位估计算法。在第 4 部分中,我们解释了如何为时间演化算符中的动能和势能项构造量子门。第 5 节给出了结果和讨论,第 6 节讨论了最后的评论。
量子光学研究的共同目标之一是找到控制复杂量子系统的方法,这既可用于研究量子力学的基本问题,也可用于量子技术的潜在应用 [1,2]。量子系统的复杂性随着所涉及部分的数量和各个部分的维数的增加而增加。对于单光子量子系统,25 年来,人们一直知道如何进行任意幺正变换 [3],这已成为集成光子学的基础 [4 – 7]。同样,在光子的其他自由度中,单量子门也已得到很好的理解,例如,使用离散化时间步骤 [8] 或光子的空间模式 [9 – 12] 和对单光子进行高维多自由度操作 [13]。多光子操作更加复杂,因为光子之间不相互作用。为了克服这一困难并实现两个光子之间的有效相互作用,辅助状态用于预示概率变换,例如受控非门 (CNOT) [14-16]。这些变换的质量已大大提高,使得任意二维双光子门的片上演示以及任意光子量子比特变换的理论概念成为可能 [17]。总而言之,多光子量子比特变换和单光子任意高维变换的特殊情况已得到充分理解。然而,d 维中 n 个光子的变换的一般情况仍未得到解决。
在本文中,我们扩展了数学流行病学中的经典 SIRS(易感-感染-恢复-易感)模型,加入了一个接种疫苗的区间 V,以解释不完善的疫苗,其效力会随着时间的推移而减弱。SIRSV 模型将人群分为四个区间,并引入了定期重新接种疫苗以减弱免疫力。假设疫苗的效力会随着接种疫苗后的时间推移而衰减。对人群进行定期重新接种疫苗。我们为连续接种疫苗时间开发了一个偏微分方程 (PDE) 模型,并在离散化接种期时开发了一个耦合的常微分方程 (ODE) 系统。我们分析了 ODE 模型的均衡,并研究了无病平衡 (DFE) 的线性稳定性。此外,我们探索了一个优化框架,其中疫苗接种率、重新接种疫苗时间和非药物干预 (NPI) 是控制变量,以尽量减少感染水平。优化目标是使用不同的基于规范的感染个体测量来定义的。使用路径跟踪方法对模型在不同控制参数下的动态行为进行数值分析。分析重点关注疫苗接种策略和接触限制措施的影响。分岔分析揭示了复杂的行为,包括双稳态、折叠分岔、前向和后向分岔,强调需要结合疫苗接种和接触控制策略来有效管理疾病传播。
大量研究表明,参数化人工神经网络 (ANN) 可以有效描述众多有趣的量子多体汉密尔顿量的基态。然而,用于更新或训练 ANN 参数的标准变分算法可能会陷入局部极小值,尤其是对于受挫系统,即使表示足够具有表现力。我们提出了一种并行调节方法,有助于摆脱这种局部极小值。这种方法涉及独立训练多个 ANN,每个模拟由具有不同“驱动器”强度的汉密尔顿量控制,类似于量子并行调节,并且它将更新步骤纳入训练中,允许交换相邻的 ANN 配置。我们研究了两类汉密尔顿量的实例,以证明我们使用受限玻尔兹曼机作为参数化 ANN 的方法的实用性。第一个实例基于置换不变汉密尔顿量,其地形阻碍了标准训练算法,使其逐渐陷入假局部最小值。第二个实例是四个氢原子排列成一个矩形,这是使用高斯基函数离散化的第二个量化电子结构哈密顿量的一个实例。我们在最小基组上研究了这个问题,尽管问题规模很小,但它表现出了假最小值,可以捕获标准变分算法。我们表明,通过量子并行回火来增强训练对于找到这些问题实例基态的良好近似值非常有用。
抽象的许多神经退行性疾病与错误折叠的Prionic proins的传播有关。在本文中,我们分别分析了与帕金森氏症和阿尔茨海默氏病有关的α-羟基核蛋白和淀粉样蛋白β的错误折叠和扩散过程。我们引入并分析了一种阳性的数值方法,用于离散Fisher-Kolmogorov方程,建模积累和Prionic蛋白的扩散。提出的近似方法基于关于多边形和多面体网格的不连续的Galerkin方法,用于空间离散化和ϑ - 方法时间积分方案。我们证明了离散解决方案的存在和一个收敛结果,其中使用隐式欧拉方案进行时间整合。我们表明,所提出的方法是在结构上提供的,从某种意义上说,它可以保证离散解决方案是非负的,这在实际应用中至关重要。我们的数值模型的数字验证既是使用制成的解决方案,又是考虑二维多边形网格中的波前传播。接下来,我们提出了在矢状平面中二维脑切片中扩散的α-突触核蛋白的模拟。该模拟的多边形网格被凝聚为维持白色和灰质的区别,利用了polydg方法在网格结构中的灵活性。我们的数值模拟证实了所提出的方法能够捕获帕金森氏症和阿尔茨海默氏病的演变。最后,我们通过使用从磁共振图像重建的三维几何形状和从正电子发射断层扫描重建的初始条件来模拟淀粉样蛋白β在患者特异性设置中的扩散。
摘要。卫星 NO 2 数据在空气质量研究中的应用日益表明,需要进行具有更高空间和时间分辨率的观测。NO 2 昼夜循环研究、全球郊区观测和排放点源识别是一些重要应用的例子,而这些应用无法在现有仪器提供的分辨率下实现。提高空间分辨率的一种方法是减少检索所需的光谱信息,从而允许使用传统 2-D 探测器的两个维度来记录空间信息。在这项工作中,我们研究了使用 10 个离散波长和成熟的差分光学吸收光谱 (DOAS) 技术来检索 NO 2 斜柱密度 (SCD)。为了测试这个概念,我们使用了来自世界各地不同地区的单个 OMI 和 TROPOMI 1B 级扫描带,这些扫描带既包含清洁区域,也包含严重污染区域。为了离散化数据,我们模拟了一组以 NO 2 吸收截面的各个关键波长为中心的高斯光学滤波器。我们使用 DOAS 算法的简单实现对离散数据进行 SCD 检索,并将结果与相应的 2 级 SCD 产品(即 OMI 的 QA4ECV 和 TROPOMI 业务产品)进行比较。对于 OMI,我们离散波长检索的总体结果与 2 级数据非常吻合(平均差异 < 5 %)。对于 TROPOMI,一致性很好(平均差异 < 11 %),由于其信噪比更高,不确定性较低。这些差异主要可以通过检索图像的差异来解释
对在医疗领域的微波成像(MWI)的潜在用途(主要是由于其便携性,低成本,安全使用非电源辐射和非侵入性)的兴趣越来越大。它已被应用,例如用于乳腺癌诊断[1]和脑冲程检测[2],[3]。MWI工作原理是在微波频率下健康组织与受影响的组织之间存在介电对比度。为了解决结果不良问题,可以使用对比度倒置(CSI)方法定量重建感兴趣域(DOI)中的介电特性[4]。CSI是一种基于优化的算法,可最大程度地降低对比度和对比源变量中特殊形成的功能。在这里,CSI算法与有限元方法(FEM)求解器[5]结合起作用,该方法将整个体积分散使用,不合理且不均匀。这使我们能够建模完整的天线几何形状,包括合成环境中的同轴饲料端口[6],从而导致更现实的模拟场景。它还允许我们在反转模型中包含一个不均匀的数值背景(类似于[7],[8]中描述的过程)。尽管场数使用线性边缘元件,但最初使用脉冲基函数来表达FEMCSI的对比度和对比度的脉冲函数[9],[10]。在这里,目的是提出一种使用磁场的基础函数获得的替代离散化,也用于对比源变量。对于简化的方案,在[11]中报告了初步结果,其中标准实施[12]与提议的