生物电子设备可以提供强大的工具,以充分地与电动性神经细胞和组织进行有效的沟通,从而使我们能够更好地了解复杂的生物学功能并治疗患有神经系统疾病的患者。[1]用于神经应用的生物电子设备的细胞或组织界面可以从使用与组织的机械和生化特性相匹配的合成水凝胶中受益。模仿细胞外基质的水凝胶也被广泛用作器官芯片设备中的细胞支持支架,[2] 3D细胞培养,[3]和用于3D生物印刷的生物互联。[4]使用含有细胞水凝胶的生物学的3D Bioprinting通过以3D空间分辨率排列细胞和材料来构建更复杂和功能性的组织和疾病模型,从而在神经组织工程中提供了para-digm的变化。[4,5]
在传染病控制领域,准确建模传播动态至关重要。由于人类流动和通勤模式是传染病传播的关键组成部分,我们引入了一种新颖的旅行时间感知种群模型。我们的模型旨在增强对疾病传播的估计。通过提供对干预效果的更可靠评估,可以最大限度地减少通过干预措施限制个人权利或人类流动行为。所提出的模型是对传统隔室模型的改进,它整合了旅行和通勤的显式传播,这是基于代理的模型中可用的因素,但在种群模型中经常被忽略。我们的方法采用了基于多边图 ODE (Graph-ODE) 的模型,该模型表示流动性和疾病传播之间错综复杂的相互作用。这种细粒度建模在评估密集连接的城市地区的动态或必须评估整个国家/地区的异构结构时尤为重要。给定的方法可以与任何类型的基于 ODE 的模型相结合。此外,我们提出了一种新颖的多层免疫力减弱模型,该模型整合了不同速度的免疫力减弱,以预防轻度和重度疾病。由于这对于晚期流行病或地方病情景特别有意义,我们考虑了德国 SARS-CoV-2 的晚期阶段。这项研究的结果表明,考虑已解决的流动性会显著影响疫情的模式。改进后的模型提供了一种精确的工具,用于预测疫情轨迹和评估与流动性相关的干预策略,使我们能够评估旅行导致的传播。从该模型得出的见解可以作为决策的基础,用于实施或暂停干预措施,例如公共交通工具上强制戴口罩。最终,我们的模型有助于保持流动性作为一种社会利益,同时减少可能由旅行活动推动的疾病活跃动态。
弯曲杆菌是一种主要的人畜共患食源性病原体,对公共卫生构成重大威胁,尤其是对儿童和免疫功能低下人群。然而,关于埃塞俄比亚弯曲杆菌感染发生和来源的数据仍然很少。本研究使用全基因组测序评估了腹泻儿童弯曲杆菌的发生、多样性和与潜在暴露源之间的关系。通过基于病例的追踪,在 2021 年 11 月至 2023 年 1 月期间从哈拉尔镇和克尔萨区收集了动物、食物和环境样本。使用选择性培养基鉴定弯曲杆菌,并使用 Illumina NextSeq 550 仪器提取和测序 DNA。使用生物信息学工具分析序列读数。暴露源中弯曲杆菌的总体患病率为 5.5%,其中城市为 6.0%,农村为 5.0%。家庭样本中检测到弯曲杆菌的可能性比市场样本高 1.8 倍(8.7%;OR = 1.8;95% CI:0.7–4.5)。食品中弯曲杆菌的出现率为 4.2%,肉类、奶类和其他食品类别之间没有显著差异。与猪相比,有家禽时环境中被弯曲杆菌污染的可能性高 5.8 倍(17.7%;OR = 5.8;CI:1.1–30.6)。序列分析发现弯曲杆菌属多样性较低,仅包含空肠弯曲菌和大肠弯曲菌,其特征是 8 种不同的序列类型(ST)。从系统发育上看,大多数测序的病例分离株与来自看护人、环境暴露或两者的分离株聚集在一起。总之,在腹泻儿童的各种接触源中都检测到了弯曲杆菌,其在 Kersa 和 Harar 之间或食物中的发生率没有显著差异。大多数分离株具有共同的 MLST 谱并聚集在一起,表明多种媒介参与了病原体的传播。建议进行归因模型支持的基于基因组的综合研究,以确定每种来源的相对贡献。
利益宣言C.J.W.获得:药房的资金支持;持有:Biontech,Inc; G.G.是创始人,顾问,并持有Scorpion Therapeutics中的私人股权,从以下方面获得了资金支持:IBM和Pharmacyclics,是有关专利申请的发明者,该专利申请与:突变,Mustute,Mutsig,msmutect,msmutect,msmutsig,msmutsig,msmutsig,msidetect,msidetect,polysolver,polysolver,tensorqtl; R.G.获得:Abbvie,Janssen,Gilead,Astrazeneca和Roche的资金支持; N.J. receives research funding from: Pharmacyclics, AbbVie, Genentech, AstraZeneca, BMS, Pfizer, Servier, ADC Therapeutics, Cellectis, Precision BioSciences, Adaptive Biotechnologies, Incyte, Aprea Therapeutics, Fate Therapeutics, Mingsight, Takeda, Medisix, Loxo Oncology, Novalgen and serves on Advisory Board /Honoraria:药房,Janssen,Abbvie,Genentech,Astrazeneca,BMS,适应性生物技术,精密生物科学,服务者,贝吉尼,Cellectis,TG Terapeutics,ADC Therapeicts,ADC Therapeutics,Mei Pharma; W.G.W.报告资金来自GSK/Novartis,Abbvie,Genentech,Pharmacyclics LLC,Astrazeneca/Acerta Pharma,Gilead Sciences,Juno Therapeutics,Kite Pharma,Sunesis,Sunesis,Miragen,Miragen,Oncternal Therapeutics,incternal Therapeutics,Inc.,Cyclacel,Loxo Oncology Oncology oncology,colical,Inc. inc. janssen,jansesen,jansen,jansen,jansen,jensen,xencor。B.A.K,C.J.W和G.G. 是专利的发明者:“表征慢性淋巴细胞性白血病的组成,面板和方法”(PCT/US21/45144); S.A.S. 报告了Bristol-Myers Squibb的非财务支持,以及Agenus Inc.,Agios Pharmaceuticals,Breakbio Corp.,Bristol-Myers Myers Squibb和Lumos Pharma中的股权。 N.P. 目前是Bristol Myers Squibb的雇员。 K.J.L. C.J.W. M.D.,J.D.K。B.A.K,C.J.W和G.G.是专利的发明者:“表征慢性淋巴细胞性白血病的组成,面板和方法”(PCT/US21/45144); S.A.S.报告了Bristol-Myers Squibb的非财务支持,以及Agenus Inc.,Agios Pharmaceuticals,Breakbio Corp.,Bristol-Myers Myers Squibb和Lumos Pharma中的股权。N.P. 目前是Bristol Myers Squibb的雇员。 K.J.L. C.J.W. M.D.,J.D.K。N.P.目前是Bristol Myers Squibb的雇员。K.J.L. C.J.W. M.D.,J.D.K。K.J.L.C.J.W. M.D.,J.D.K。C.J.W.M.D.,J.D.K。M.D.,J.D.K。持有标准Biotools Inc.(以前为FlusIdigm Corporation)的权益。和E.M.P是美国公用事业申请号的发明者US-2022– 0298580-A1于2012年10月10日提交,国际申请号WO/2021/041669于9/15/2022提交,“免疫签名可预测Richter转换中对PD-1封锁的反应。”。和B.T.没有相关的COI。C.T. 报告了Beigene,Janssen,Abbvie,Az和Loxo的酬金,以及Beigene,Janssen和Abbvie的研究资金。C.T.报告了Beigene,Janssen,Abbvie,Az和Loxo的酬金,以及Beigene,Janssen和Abbvie的研究资金。
• 预计在 3-5 年内获得第一批结果 • 使用反义分子特异性抑制生殖细胞发育导致不育 • 直接应用于生产用蛋 • 正常发育和生产条件 • 方法正在开发中 • 监管环境不确定
Arbelaez,J。D.,Dwiyanti,M。S.,Tandayu,E.,Llantada,K.,Jarana,A.1K-RICA(1K-RICE自定义扩增子)一种基于大米中遗传学和育种应用的新型基因分型SNP分析。米,12,1 - 15。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。 特质渗入项目的系统设计。 理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。 DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。特质渗入项目的系统设计。理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。DNA序列数据的快速而灵活的模拟。基因组研究,19,136 - 142。https:// doi。org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。回到未来:将MAS作为现代植物繁殖的工具。理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A.重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。植物生产科学,20,337 - 352。https://doi.org/10。1080/1343943X.2017.1391705 Collard,B.C. Y.,Gregorio,G。B.,G。B.,Thomson,M。J.,M。J.,R.转移水稻育种:在国际水稻研究所(IRRI)上重新设计灌溉育种管道。作物育种,遗传学和基因组学,1,E190008。https://doi.org/10.20900/cbgg20190008 Dar,M.H.,Zaidi,N。W.,Waza,S.A.,Verulkar,S.B.,S.B.,Ahmed,T.,Singh,P.K. K.,Kathiresan,R.M.,Singh,B.N.,Singh,U.S。,&Ismail,A.M。(2018)。在有利条件下没有收益罚款,为成功采用洪水大米铺平了道路。科学报告,8,9245。B.(2011)。ridge回归和其他用于基因组选择的内核,r tagkage rrblup。植物基因组,4,250 - 255。https://doi.org/10.3835/plantgenome2011.08.0024
.................................................................................................................................................... 61 图 24 DLM 估计的时间序列中每个种群的估计趋势。 ... 62 图 25. 在夏季在参考点进行的浮潜调查中,每 5 公里成年夏季钢头鳟的年峰值数量。参考点位于奥林匹克国家公园的六条河流中,X 轴的标签报告了每年重复调查的次数 n。计数包括自然和孵化场来源的成年鳟鱼(见表 5)。详情请参阅 Brenkman 和 Connolly (2008)。 ............................................................................................................. 64 图 26. 在连续浮潜调查中计数的成年夏季钢头鳟的分布和相对丰度(见表 6)。成年钢头鳟的纵向剖面以 1 公里的空间尺度绘制,以箱长表示。 ........................................................................................... 68 图 27. 估计冬季径流种群的 15 年逃逸趋势(切断后总逃逸量)。点显示估计的随时间变化的趋势和个别种群的 95% 置信区间。15 年窗口的结束时间是 x 轴上的年份。仅显示至少有 2 个观测值(数据点)位于前 5 年且有 2 个观测值位于后 5 年的 15 年窗口。请注意,海峡 JF 组中的种群要小得多(图 22)。 ........................................................................................................................................... 70 图 28. 估计的 Busby(1977-1994 年)和后 Busby(1995-2022 年)时期的冬季径流种群的逃逸趋势(切断后总逃逸量)。点显示估计的趋势和 95% 置信区间。 ........................................................................................................................... 72 图 29. 冬季径流库存的 15 年平均逃逸量估算值(截断后的总逃逸量)。各点显示截至 x 轴年份的 15 年期间各个库存的估计平均值。仅显示至少有 2 年在前 5 年、2 年在后 5 年的 15 年窗口。x 轴上的年份是 15 年期的结束年份。 ........................................................................................................................... 74 图 30. 冬季径流库存的平均逃逸量估算值(3 月 15 日截断后的总逃逸量),前期(1989-1993 年)和后期(2018-2023 年)。请注意,y 轴为 log10 刻度。 ........................................................................................................................... 75 图 31.联合管理者报告的自然(3 月捕捞期后逃逸)冬季洄游鲑鱼的捕捞死亡率。这是捕捞量/捕捞量。娱乐性钓鱼(捕获和释放)死亡率仅包含在霍河数据中。...................................................................................... 78 图 32. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群增长的一年估计值。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 80 图 33. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群的种群增长率。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 81 图 34. 联合管理者报告的自然(3 月捕捞期后)冬季洄游鲑鱼逃逸和捕捞的原始数据。 ........................................................................................................... 83 图 35. 估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。 ............................................................................................................................................. 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(摘自 Moore 1960 年)。 ............................................................................................................................................. 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88
在传染病控制领域,传播动力学的准确建模是关键的。由于人类的流动性和通勤模式是传染病传播的关键组成部分,因此我们引入了一种新型的旅行时间意识到的种群模型。我们的模型旨在增强疾病传播的估计。通过提供有关干预措施有效性的更可靠的评估,可以最大程度地减少干预措施的个人权利或人类流动行为。所提出的模型是比传统隔间模型的进步,它集成了旅行和通勤上的显式传输,这是基于代理模型的一个因素,但通常被跨吞噬模型忽略了。我们的方法采用了基于多边的基于图的(图形)模型,该模型代表了迁移率和疾病扩散之间的复杂相互作用。在评估密密相连的城市地区的动态或必须评估整个国家的异质结构时,这种颗粒状建模尤其重要。给定方法可以与任何基于ODE的模型结合使用。此外,我们提出了一种新型的多层减弱免疫模型,该模型将不同的步伐减弱,以防止轻度和严重的疾病病程。由于这对于晚期流行病或流行情景特别有意义,因此我们考虑了德国SARS-COV-2的后期。这项工作的结果表明,解决已解决的移动性会显着影响爆发的模式。改进的模型提供了一种精致的工具,可以通过允许我们评估导致旅行的传输来预测爆发轨迹和评估与移动性有关的干预策略。从该模型中得出的见解可以作为决策或中止干预措施的决策的基础,例如公共交通的强制性面具。最终,我们的模型有助于将流动性作为社会善良,同时减少可能受旅行活动驱动的旺盛疾病动态。
传统的Popsyn方法,例如迭代比例拟合(IPF)(例如(Beckman等人)1996; Ye等。 2009))和贝叶斯网络(例如(Ilahi和Axhausen 2019; Sun and Erath 2015),试图将合成种群与两个数据源相结合,但遭受了几种限制。> IPF,例如,在尺寸和零电池问题的诅咒中挣扎,其中属性的某些组合在示例数据中完全缺少。 贝叶斯网络虽然更灵活,但可以产生难以置信的组合,这些组合不能准确地代表现实世界,并且不能与边际数据匹配(Rahman and Fatmi 2023)。 这些缺点强调了需要更强大的方法,该方法可以更好地整合多种数据源并保持现实的人口特征。1996; Ye等。2009))和贝叶斯网络(例如(Ilahi和Axhausen 2019; Sun and Erath 2015),试图将合成种群与两个数据源相结合,但遭受了几种限制。>2009))和贝叶斯网络(例如(Ilahi和Axhausen 2019; Sun and Erath 2015),试图将合成种群与两个数据源相结合,但遭受了几种限制。IPF,例如,在尺寸和零电池问题的诅咒中挣扎,其中属性的某些组合在示例数据中完全缺少。贝叶斯网络虽然更灵活,但可以产生难以置信的组合,这些组合不能准确地代表现实世界,并且不能与边际数据匹配(Rahman and Fatmi 2023)。这些缺点强调了需要更强大的方法,该方法可以更好地整合多种数据源并保持现实的人口特征。
阴道微生物组组成与宿主健康密切相关。由特定厌氧菌(例如,阴道gardnerella)主导的微生物组称为细菌性阴道病(BV),与负面的健康结果有关,而乳酸杆菌属物种的定殖被认为可以预防BV。然而,乳酸杆菌内体在阴道健康中的作用是有争议的,有证据表明某些菌株可能无法预防BV,而其他菌株则可能无法防止BV。为了更好地表征L. iners菌株,需要在体外研究它们与阴道细菌和人类细胞的相互作用,但由于缺乏液体培养基的快速生长而阻碍了这种情况。我们开发了三种液体培养基的生长:Serrador适应ISCOVE的ISCOVE的培养基(Slim),这导致了强大的L. Iners生长,Slim-V(Slim-V)的阴道适应性版本(Slim-V)和一种化学定义的培养基(Slim-CD)(Slim-CD)。纤细和纤细的V型生长可显着改善。纤细-CD导致生长速度较慢,但可能被证明可用于表征L. iners的营养需求或代谢物生产。修改后的Slim-V版本支持人宫颈上皮细胞的生长,并为将来的共培养工作提供了基础。在这里,我们介绍了纤细,纤细V和Slim-CD的制剂,并比较了培养基中细菌菌株和人类细胞的生长。