摘要:自 2018 年以来,学术界对新闻业人工智能的兴趣日益高涨。通过对 2014 年至 2023 年的文献进行系统回顾,本研究讨论了该领域研究的发展以及人工智能如何改变新闻业。旨在通过对学术论文的回顾和对被引用次数最多的文章的定性分析,了解人工智能对新闻业的影响。本研究结合了:对从 Web of Science 和 Scopus 中提取的科学文章进行系统回顾(n = 699)以及对引用次数超过 50 次的文章进行分类内容分析的定性方法(n = 59)。结果(n = 699)突出了阿姆斯特丹大学和圣地亚哥德孔波斯特拉大学的作者的突出地位。美国的作者数量最多:261 人分布在 99 家机构。分类内容分析(n = 59)显示,研究重点关注记者的工作等问题,因为人工智能正在用重复和单调的任务取代记者,这引发了有关记者角色的若干问题。研究结果显示了计算方法的兴起,凸显了人工智能在研究中的普遍性,而这在以前的研究中尚未被探索过。伦理、监管和新闻教育在研究中仍然没有得到充分讨论。
背景和目的:多巴胺对心血管,内分泌,肾脏和中枢神经系统有影响。电化学技术在研究人员中越来越受欢迎,作为评估多巴胺和尿酸水平的一种方式。实验方法:使用电化学技术,新的奥斯陆大学(UIO-66) - 氧化物氧化物纳米复合材料改性的碳糊电极是为了研究尿酸和多巴胺及其结合的电氧化的。在重新设计的电极,使用差分脉冲伏安法(DPV)以非常敏感的方式同时检测到尿酸和多巴胺。关键结果:多巴胺DPV峰值电流以线性方式增加,剂量在0.05至600.0 µm之间。结论:尿酸和多巴胺注射样品中的尿酸和多巴胺水平可以在提出的传感器的帮助下确定,该传感器的价格合理且性能很好。
푍(2)晶格量规理论在研究量子代码的量子误差校正阈值概率(QEC)的研究中起着重要作用。对于某些QEC代码,例如众所周知的Kitaev的复曲面/表面代码,可以将QEC解码问题映射到给定噪声模型的统计力学模型上。对阈值概率的研究对应于映射统计力学模型的相图。这可以通过统计力学模型的蒙特卡洛模拟来研究。在[11]中,我们研究了在二维上与综合征测量噪声一起在旋转/表面代码上的逼真噪声模型的影响,并引入了随机耦合 - 平面仪表模型,三维푍(2)×푍(2)×푍(2)lattice Gauge理论。这个新的Z(2)量规理论模型捕获了在去极化和综合征噪声下的紫杉/表面代码的主要方面。在这些程序中,我们主要关注Mont Carlo模拟的各个方面,并讨论了Monte Carlo模拟Z(2)晶格理论的初步结果。
摘要 考虑通过电化学加工 (ECM) 对金属增材制造的 316L 不锈钢进行可加工性研究。这种材料用于汽车、航空航天、珠宝和生物医学行业的原型设计,这些行业需要根据具体情况定制组件。在本研究中,考虑了电压、电解质浓度、占空比和选择四个级别的 L16 正交阵列等 ECM 工艺参数进行优化。采用多标准决策加工方法,即基于熵的多目标优化,基于比率分析法进行性能分析。研究表明,为获得最佳加工性能,建议使用 14 V、35 gl -1 NaNO 3 电解质浓度和 90 % 的占空比。根据主效应表,最佳组合是 16 V、35 gl -1 电解质浓度和 60 % 的占空比。方差分析结果表明,占空比对加工性能的贡献约为27.06 1%,电压对加工性能的贡献约为24.015%,电解质含量对加工性能的贡献约为15.58%。利用扫描电子显微镜对每个微加工孔进行扫描,并拍摄不同分辨率的图像,以分析加工孔的质量。
复杂的langevin(Cl)动力学,其中自由度被分析扩展,提供了潜在的解决方案,因为它不依赖重要性采样,而是通过随机过程探索复杂的流形[4,5]。它是随机定量的扩展[6,7],相当于路径积分定量。cl已显示在三个[8]和四个[9]欧几里得维度的晶格场理论中起作用,其中包括严重的符号问题,包括在QCD [10-14]中,但即使在简单模型[15-17]中,它也可能失败。几年前[18-20]阐明了这种情况[18-20],这是通过在实际歧管上的复杂分布与复杂歧管上的真实和正分布之间形式关系的推导,该分布在CL过程中有效地进行了采样,从而导致了正确性的正确标准,需要证实后者验证。然而,问题仍然存在,该方法的可靠性取决于对Cl漂移中无穷大和近杆的分布行为的精确理解。最近的工作可以在例如参考。[21 - 25]。
慢性过氧化物组增殖物激活的受体α/γ和大麻素受体2激动剂治疗减弱了内脏脂肪组织(VAT)衍生的细胞外囊泡相关的增值税和非酒精性steatoholic steatoholic steatoholic steatoholic steatohololic sterepatial steathepation Pio hepatial poceathepation pipation steatohocial pipation steatohocial pipation。AM J Pathol。2024年10月26日:S0002-9440(24)00398-5。
附属机构:1 加拿大卡尔加里大学卡明医学院细胞生物学和解剖学系 2 加拿大卡尔加里大学霍奇基斯脑研究所 3 加拿大卡尔加里大学卡明医学院应用空间组学中心 4 本文所用的数据来自阿尔茨海默病神经影像计划 (ADNI) 数据库 (adni.loni.usc.edu)。因此,ADNI 内的研究人员参与了 ADNI 的设计和实施和/或提供了数据,但没有参与本报告的分析或撰写。完整的 ADNI 研究人员名单可参见:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 5 加拿大不列颠哥伦比亚大学心理学系 6 加拿大不列颠哥伦比亚大学 Djavad Mowafaghian 脑健康中心 7 加拿大多伦多大学精神病学系 8 加拿大成瘾与心理健康中心坎贝尔家庭心理健康研究所 9 加拿大卡尔加里大学心理学系 10 加拿大卡尔加里大学阿尔伯塔儿童医院研究所
协作机器人技术是机器人技术的一部分,该机器人技术在执行各种技术操作和任务的过程中研究,研究和实践CPR在与人的互动(协作)中的应用。协作机器人(配件)是为共享工作区或人类和机器人直接接触的直接HR(人类机器人)交互而设计的机器人。协作机器人计划与传统的公关计划不同,在该计划中,机器人与与人类的接触隔离开来。是国际标准化组织定义的,配备机器人是一种机器人,可以在协作操作中使用,在协作操作中,机器人和人类在制造运营的定义工作空间中同时工作(这不包括机器人对机器人系统或同事,在不同时间工作的人和机器人)。协作(在工业机器人技术的背景下)是一个人和机器人实现设定目标的操作,行动或工作的共同绩效的过程。协作操作是CPR与人之间定义的动作顺序,因此,这导致了特定任务或工作的执行。协作技术系统(CTS)是一种技术系统,在该系统中,人们共同努力的CPR被用作通用的灵活自动化手段。协作工作空间是一个人的共享工作区和CPR,在其中进行协作操作。人类 - 机器人相互作用(人类 - 机器人相互作用HRI)是生活中各个方面的人与机器人之间相互作用的过程。但是