我们概括了天然NB 2 O 5溶解模型[G. Ciovati,应用。物理。Lett。 89,022507(2006)]到顺序叠加剂溶解,多层溶解和现实温度曲线,可能适用于其他材料。 该模型应用于不同温度曲线和NB中的两步氧化物溶解的次级离子质谱深度测量值,并发现良好。 在伦敦穿透深度长度上的杂质剖面引起的Meissner筛选响应的背景下,O杂质的浅扩散导致表面附近的峰值超电流密度大大降低。 在此框架中,氧化物溶解和氧扩散可以说明SRF腔中峰值磁场的上升,并在达到最佳烘焙时间后进行烘烤时间和次要压力,与峰值场烘烤温度和峰值烘焙温度和时间以及最近的淬火场测量均吻合。Lett。89,022507(2006)]到顺序叠加剂溶解,多层溶解和现实温度曲线,可能适用于其他材料。该模型应用于不同温度曲线和NB中的两步氧化物溶解的次级离子质谱深度测量值,并发现良好。在伦敦穿透深度长度上的杂质剖面引起的Meissner筛选响应的背景下,O杂质的浅扩散导致表面附近的峰值超电流密度大大降低。在此框架中,氧化物溶解和氧扩散可以说明SRF腔中峰值磁场的上升,并在达到最佳烘焙时间后进行烘烤时间和次要压力,与峰值场烘烤温度和峰值烘焙温度和时间以及最近的淬火场测量均吻合。
接收、穿透深度和图像质量。Gerhards 博士解释了这项技术提供的独特优势:“线圈的形状不再决定我们可以用它做什么。例如,它可以缠绕在膝盖上以获得完整的图像,然后同一个线圈可以轻松地转移到肘部,而无需移动患者。它基本上是最接近完全定位自由的 360 度覆盖。由于其灵活的设计,它可以在所有轴上移动以符合患者的解剖结构。这意味着它适合所有年龄、尺寸和形状的患者 - 这对于我们看到的越来越多的大型患者尤其重要。不再有“难以扫描的区域”这样的东西,因为“毯子”线圈符合患者的解剖结构,使元件更接近身体。这
本文提供了冰盖遥感中心 (CReSIS) 雷达和平台的更新和概述,包括这些系统的代表性结果。CReSIS 雷达系统的工作频率范围为 14 – 38 GHz。每个雷达系统的特定频带由所需的信号穿透深度、测量分辨率、分配的频谱和天线工作频率(通常受飞机集成的影响)决定。我们还重点介绍了最近的系统进步和未来工作,包括 (1) 增加系统带宽;(2) 小型化雷达硬件;(3) 提高灵敏度。对于平台开发,我们正在开发更小、更易于操作且更便宜的无人机系统。下一代平台将进一步扩大具有垂直起降能力的科学家的可及性。
反射波用于从地壳到人脑等各种扩散介质中的传感和成像。将光源和探测器分开会增加光的穿透深度,但信号强度会迅速下降,导致信噪比较差。本文,我们通过实验和数值表明,对入射到扩散样品上的激光束进行波前整形可以使反射率在高达 10 个传输平均自由程的深度处提高一个数量级。我们开发了一个预测最大反射率增强的理论模型。我们的分析表明,反射波对扩散介质深处局部吸收变化的灵敏度有显著提高。这项工作说明了相干波前控制在非侵入式扩散波成像应用(如扩散光学断层扫描和功能性近红外光谱)中的潜力。
摘要。神经调节在解读神经回路和探索神经系统疾病的临床治疗中发挥着不可估量的作用。光声神经调节是一种新兴的模式,它受益于超声波的高穿透深度以及光子的高空间精度的优点。我们总结了各种用于神经调节的光声平台的最新发展,包括基于光纤、薄膜和纳米传感器的设备,强调了每个平台的主要优势。讨论了光声作为一种可行的神经调节工具的可能机制和主要障碍。提出了基础研究和转化研究的未来方向。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.032207]
对 Smiths Detection Target-ID 便携式傅里叶变换红外 (FTIR) 光谱仪进行了技术审查。审查的目的是确定 Target-ID 是否可用作一线筛选技术,以识别药品 (DP) 中是否存在活性药物成分 (API)。红外 (IR) 筛选技术测量红外辐射的吸收率,对极性键最敏感,从而使 IR 技术对功能团的响应最灵敏。IR 仪器采用金刚石衰减全反射 (ATR),因为它坚固耐用且易于使用。通过将样品材料压在金刚石 ATR 元件上,IR 探测光束可穿透表面约 1-5 μm。液体样品可以简单地放在 ATR 元件上。虽然其他 IR 技术需要稀释样品,但 ATR 的低穿透深度使得“按原样”样品分析成为可能。
摘要:本文研究了利用我们最近开发的激光箔打印 (LFP) 增材制造方法制造致密铝 (Al-1100) 部件 (相对密度 > 99.3%)。这是通过使用 7.0 MW/cm 2 的激光能量密度来稳定熔池形成并以 300 µ m 厚度的箔片产生足够的穿透深度来实现的。LFP 制造的样品中的最高屈服强度 (YS) 和极限拉伸强度 (UTS) 沿激光扫描方向分别达到 111±8 MPa 和 128±3 MPa。与退火的 Al-1100 样品相比,这些样品表现出更高的拉伸强度但更低的延展性。断口分析显示拉伸试验样品中存在拉长的气孔。利用电子背散射衍射 (EBSD) 技术观察到 LFP 制备样品中沿凝固方向的强烈晶体织构和密集的亚晶界。
使用电气传输和射频磁敏感性的测量结果,研究了Laniga 2的Single晶体的超导晶体的超导相。发现伦敦穿透深度随温度呈指数变化,表明费米表面完全间隙。推断的超流体密度接近单间隙弱耦合各向同性S-波超导体的密度。超导性对于通过电子辐照引起的非磁点样疾病非常健壮。我们的结果通过需要微调的杂质散射幅度来对先前提出的三重态配对状态施加强大的限制,并且最自然地通过具有符号的签名,弱耦合和近似动量独立的单线超导状态来解释Laniga 2中,这不会破坏时间反向对称性。我们讨论了如何将我们的发现与以前指示超导阶段的磁性特征的测量值核对。
超导体是具有零电阻率的材料,并且具有驱逐称为Meissner效应的磁场的能力。他们的无耗散反应对杂志悬浮和量子干扰装置等电路至关重要。在这里,我们使用超导磁性磁性来塑造控制自旋波的传输的磁性环境 - 磁铁有希望的芯片信号载体中的旋转激发 - 在薄膜磁铁中。使用基于钻石的磁成像,我们观察到具有强烈变化的温度低调波长的杂交旋转波 - 硅流电流模式。我们从波长偏移中提取依赖温度的伦敦穿透深度,并使用聚焦激光器实现对自旋波折射的局部控制。我们的结果证明了超导体操纵自旋波传输的多功能性,并在自旋波光栅,滤纸,crys骨和腔体中具有潜在的应用。
1 Alikhanyan国家实验室,Alikhanian Brothers Str。2,0036 YEREVAN,亚美尼亚2放射物理与电子学院,Alikhanian Brothers Str。1,0203 Ashtarak,亚美尼亚我们研究了从弱粗糙不透明的表面进行镜面和扩散的散射。开发了一种利用新修改的边界条件的理论。他们显着改变了镜面和散射强度的结果。在波长区域中预测了抗反射,其中光穿透深度为粗糙度均方根高度。在300-400nm区域中,对纳米改造的Si膜实验观察到了这种现象。弥漫性散射(雾霾)光的角度和极化依赖性被发现。表明,雾度主要是p为主导的,并且在表面正态周围是正常的,独立于入射角。