服务器身份验证向用户保证,他们正在与真正代表声称的域的服务器进行通信。今天,服务器身份验证依赖于认证机构(CAS),第三方对将公共钥匙签名为域。CAS仍然是Internet安全性的弱点,因为任何有缺陷的CA都可以为任何域发布证书。本文介绍了NOPE的设计,实现和实现评估,NOPE是服务器身份验证的一种新机制,该机制使用简洁的证明(例如,零知识证明),以证明存在将公共密钥链接到指定领域的DNSSEC链。DNSSEC的使用极大地降低了对CAS的依赖,并且证明的尺寸较小,可以与旧版基础架构的兼容性,包括TLS服务器,证书格式和证书透明度。不使用证明的效果最低,使客户的大小增加了约10%,并且需要超过1 ms才能验证。nope的核心技术贡献(将其推广)包括有效的技术,可以在简洁的证明中代表解析和加密操作,从而将证据的产生时间和记忆要求减少几乎数量级。
本书的重点将是一种指导折衷和综合治疗方法的模型的开发。因此,BPD不必被视为主要植根于异常的脑电路,或完全是由于Trau Matic经验所致。相反,从基因与环境相互作用方面最好理解其发展。我将采用类似的模型来了解如何使BPD成功进行处理。在过去的几十年中,已经促进了专门为BPD设计的各种心理治疗方法,但是每种方法都倾向于仅描述针对患者使用的干预措施的一部分。在本书中,我提出了一个折衷的模型,该模型整合了许多来源的想法。我还展示了几种计划中的精心策划疗法如何帮助BPD患者。您不必参加课程或遵循手册来管理这些案件。
研究语言通常分离出一种语言方式或过程,重点是理解或生产。我们的目标是将两者结合在新的简洁语言范式中(拍手),在一个试验中利用理解和生产。试验结构在各种条件下是相同的,呈现一个听觉句子(受约束,不受约束,时间转移),然后是要命名的图片(正常,拼命的)。我们用脑电图测试了21位年轻的健康演讲者,以检查拍手提供的几种验证和新颖的对比。行为结果揭示了在受约束的句子之后的图片的最快命名时间,这表明在图片开始之前,基于句子约束,表明单词检索。命名不受约束的句子的命名与裸照命名一样快。句子发作后对正常语音的大脑反应(240-400ms)与时间转相关的语音有显着差异。图片锁定的ERP显示出幅度差异与条件的函数,尤其是在P2组件(200-300ms)中,并且也受到前面约束句子的调节。alpha-beta功率相对于时间倒转或不受约束的句子而言,上下文引导的图片命名降低。这些结果表明,拍手提供了一个有希望的框架来研究语言系统,提供了不同版本的语言内容和任务,并结合了电生理学或其他成像方法。
抽象开放式RAN已成为蜂窝网络发展的一种变革性方法,解决了现代应用和高网络密度所带来的挑战。通过利用开放标准化接口相互连接的分类,虚拟化和基于软件的元素,开放式运行引入敏捷性,成本效益和增强无线电访问网络(RAN)域中的竞争。由O-RAN联盟规范驱动的开放式范式旨在改变电信生态系统。尽管有广泛的技术文献,但对于行业专业人员,研究人员和政策制定者来说,缺乏简洁的摘要。本文通过提供公开运行的简洁而全面的概述来解决这一差距。与以前的工作相比,我们的方法通过逐渐分解从以前的RAN Architectures中知道的不同组件来引入开放。我们认为,这种方法为已经熟悉移动通信网络的一般概念的人们提供了更好的理解。基于对开放式RAN的一般理解,我们介绍了关键的架构原理,界面,组件和用例。此外,这项工作研究了与采用开放式架构相关的潜在安全含义,强调了强大的网络保护措施的必要性。
控制器数组的元素需要是字符串(文本或字节字符串)。如果该数据项也是字符串,则控制操作员与数据项匹配,该字符串是通过连接数组中的字符串而构建的。此串联的结果与数组的第一个元素相同的字符串(文本或字节)。(如果数组中没有元素,则.join构造匹配两种空字符串,显然会受到控制运算符目标的约束。)在字符串中的字节序列上执行串联。如果串联的结果是文本字符串,则如果结果是有效的文本字符串(即有效的UTF-8),则结果字符的顺序仅与目标数据项匹配。请注意,与RFC 8949第3.2.3节中使用的算法相反,不需要所有单个字节序列进入串联以构成有效的文本字符串。
在通用盲量子计算问题中,客户端希望利用单个量子服务器来评估 C | 0 ⟩,其中 C 是任意量子电路,同时保持 C 的秘密性。客户端的目标是使用尽可能少的资源。这个问题由 Broadbent、Fitzsimons 和 Kashefi[4] 首次提出,已成为量子密码学研究的基础,这不仅是因为它本身的重要性,还因为它为新技术提供了试验台,这些新技术以后可以应用于相关问题(例如量子计算验证)。关于这个问题的已知协议主要是信息理论 (IT) 安全的或基于陷门假设(公钥加密)。在本文中,我们研究了由随机预言机建模的对称密钥原语的可用性如何改变通用盲量子计算的复杂性。我们给出了一种新的通用盲量子计算协议。与之前关于 IT 安全协议(例如 BFK[4])的工作类似,我们的协议可以分为两个阶段。在第一阶段,客户端准备一些具有相对简单量子门的量子小工具并将它们发送到服务器,而在第二阶段,客户端完全是经典的——它甚至不需要量子存储。至关重要的是,该协议的第一阶段是简洁的,也就是说,它的复杂性与电路大小无关。给定安全参数 κ ,它的复杂性只是一个固定的 κ 多项式,可用于评估大小高达 κ 的次指数的任何电路(或多个电路)。相比之下,已知的方案要么要求客户端执行与电路大小成比例的量子计算 [4],要么需要陷门假设 [18]。
8在获取MEDLAB之前,ACL没有就与MedLab计算机网络相关的风险,MEDLAB持有的个人信息或解决与该网络获取相关的任何网络安全风险所采取的步骤进行足够的网络安全评估。特别是,在获得MedLab之前,ACL在前三年中没有进行过任何IT五式测试,脆弱性评估或IT安全审核。从2021年底开始,ACL拥有并控制了MedLab的计算机网络,该网络与ACL的计算机网络分开运行。此外,从那时起,IT团队负责向ACL首席信息官(CIO)报告的MEDLAB计算机网络的日常运营。ACL计划将MEDLAB的网络转移到ACL的网络并退役MEDLAB服务器。直到2022年7月左右才发生。
最新的大型语言模型(LMS)越来越长的上下文。虽然这种趋势允许使用大量的SOTA LMS使用大量文本,但要求这些大的LMS处理潜在的冗余或无关紧要的数据,可以不必要地增加推理时间和成本。为了解决这个问题,我们提出了Blinder,该方法利用了一个小的易键率LM来采样最小的Inter功能集,从而最大程度地提高了下游LM的性能。Blinder训练具有价值头的LM,以估算下游LM的最佳输出的可能性。我们评估了盲目的盲目决策制定任务,该任务臭名昭著,臭名昭著的状态描述:nethack和机器人计划。Blinder在Nethack和Robot Planning中分别将LM Actor In-Actor In-In-Actor In-In-Actor In-In-Actor In-In-flongion降低了158%和54%,这分别代表了大量推断成本节省,同时又代表了绩效的提高。
格问题的难度为量子安全密码学提供了最有前途的安全基础之一。公钥加密和数字签名的基本方案已接近 NIST 和其他几个标准化机构的标准化,研究前沿已转向构建具有更高级隐私功能的原语。许多此类原语的核心是零知识证明。近年来,格关系的零知识证明(和使用格关系的零知识证明)的效率有了显著提高,目前它们为许多场景提供了可以说是最短、计算效率最高的量子安全证明。非专家(和专家!)使用这些证明的主要困难在于它们有很多活动部件,并且许多内部参数取决于人们试图证明的特定实例。我们的主要贡献是一个零知识和简洁证明库,它由简单易用的 Python 接口下高效灵活的 C 代码组成。没有任何基于格的证明背景的用户应该能够指定他们想要证明的格关系和范数界限,然后该库将自动创建一个带有内在参数的证明系统,使用 LaBRADOR 的简洁证明(Beullens 和 Seiler,Crypto 2023)或 Lyubashevsky 等人的线性大小(尽管对于某些应用来说较小)证明(Crypto 2022)。Python 接口还允许基于格的密码学中使用的常见操作,这将使用户能够在语法简单的 Python 环境中编写和原型化他们的完整协议。我们通过提供盲签名、匿名凭证、最近的 Swoosh 协议(Gaj-land 等人,Usenix 2024)中所需的零知识证明、证明 Kyber 密钥的知识和聚合签名方案的协议实现来展示该库的一些实用性。从大小、速度和内存的角度来看,其中大多数都是最有效的,已知的量子安全实例。
Turner等。 (2023a)最近报道说,来自美国38家企业的60家诊所广告干细胞或基于外泌体的干预措施作为COVID-19的治疗或预防措施。 我们完全同意他们的说法,即“与干细胞,外泌体和其他再生医学产品有关的差距和解释性不确定性领域的国家,应发展和执行更全面的监管结构。''''Turner等。(2023a)最近报道说,来自美国38家企业的60家诊所广告干细胞或基于外泌体的干预措施作为COVID-19的治疗或预防措施。我们完全同意他们的说法,即“与干细胞,外泌体和其他再生医学产品有关的差距和解释性不确定性领域的国家,应发展和执行更全面的监管结构。'尤其是在全球范围内提供的基于外泌体的干预措施,不仅用于Covid-19,而且针对各种疾病和条件(Asadpour等,2023)。因此,迫切需要传播信息并澄清此类国家保护患者的法规。未能这样做可能会导致困扰的困扰,例如以下所述的日本病例,其中不仅患者面临严重并发症甚至死亡的风险,而且甚至没有人可以确定患者是否死亡。外xare体类型的细胞囊泡通过各种生物活性物质的转移来负责细胞间通信。目前正在评估它们作为诊断标记和向靶细胞提供疗法的手段(Abbott,2023)。根据Asadpour等人的说法。(2023),使用外泌体和127次使用细胞外囊泡的临床试验进行了288次临床试验。但是,目前尚无使用细胞外囊泡或外泌体(https://wwwww.isev.org/patient-information-and-safformation-and-safety-notice-notice-extracellular-vesomes-exosomes-exosomes-and-soposomes-and-unproven-疗法)的批准疗法,包括与人类人体有关的严重风险,包括严重的风险副作用SuchasmaSusmalignantTransTranstration,污染,不需要的免疫反应和毒性(Abbott,2023; https://www.jsrm.jp/cms/uploads/2024/2024/05/05/news14993-2.pdf)。