观察阶段,并将允许人为因素专家和人类操作员对观察的评论。录音可用于进行自我对照。观察和访谈使得可以详细描述所执行的任务,所涉及的参与者,工具以及时间和地理方面以及可能的干扰。
版权所有 2018 卡内基梅隆大学。保留所有权利。本材料基于国防部根据合同编号 FA8702-15-D-0002 与卡内基梅隆大学合作资助和支持的工作,该合同旨在运营软件工程研究所,该研究所是联邦政府资助的研究和开发中心。本材料中的观点、意见和/或发现均为作者的观点、意见和/或发现,除非另有文件指定,否则不应被视为官方政府立场、政策或决定。无担保。本卡内基梅隆大学和软件工程研究所材料按“原样”提供。卡内基梅隆大学不对任何事项作任何明示或暗示的保证,包括但不限于对用途的适用性、适销性、排他性或使用该材料所获得的结果的保证。卡内基梅隆大学不对专利、商标或版权侵权作任何形式的保证。[分发声明 A] 本材料已获准公开发布和无限制分发。非美国政府使用和分发请参阅版权声明。本材料可以完整复制,无需修改,也可以书面或电子形式自由分发,无需正式许可。任何其他用途均需获得许可。许可请求应直接发送给软件引擎
估计公共报告信息收集负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息未显示当前有效的 OMB 控制编号,则任何人都不会因未遵守信息收集而受到处罚。
摘要:应对气候变化的政策要求减少海运的温室气体排放。为了实现计划的目标,最有希望的方法是改进船舶和重新设计港口。后者必须通过整合岸电系统、当地可再生能源和能源存储系统,为新型绿色船舶提供可持续的电能。本文提出了一种实现这一目标的方法,该方法能够同时考虑船舶和港口的特点。通过案例研究解释了该方法的工作流程,其中考虑了两种岸电功率大小和两种为船上能源存储充电的不同操作方法。还讨论了最合适的能源存储技术。案例研究展示了如何应用该方法,并证明了港口基础设施对船舶环境性能有直接影响。
摘要:地质灾害应急响应是一项多因素、时间紧迫、任务密集、社会意义重大的灾害事件管理行为。为提高地质灾害应急响应中天—空—地遥感协同观测的合理化和规范化,本文综合分析了遥感器和应急服务系统的技术资源,利用MySQL(结构化查询语言)建立了技术和服务评估指标数据库。基于该数据库,提出分别采用逼近理想解排序法(TOPSIS)和贝叶斯网络对地质灾害应急响应中遥感技术协同观测效果和服务能力进行评估的方法。通过实验表明,该评估方法可有效掌握地质灾害应急响应中遥感协同技术的运行情况和任务完成情况,为地质灾害应急响应中异构传感器的协同规划工作提供决策依据。
摘要:随着电动机在电气系统中插入的显着增加,系统的总体惯性减少,从而导致其支持频率的能力丧失。这是因为使用可变的速度风力涡轮机(基于双馈感应发电机(DFIG)),它们通过电子转换器耦合到功率网格,它们的特性与同步发电机没有相同的特性。因此,本文提出了使用DFIG相关的电池储能系统(BES)来支持主要频率。制定了控制策略,并考虑了诸如充电和放电电池限制和电池限制内的运行之类的重要因素。时间域模拟来研究包含风力涡轮机的分配系统,显示了BES的优势而不是频率干扰。
目标是在亚瞬态到瞬态时间范围内保持内部电压相量恒定或接近恒定。这使得 IBR 能够立即响应外部系统的变化,并在具有挑战性的网络条件下保持 IBR 控制稳定性。必须控制电压相量以保持与电网中其他设备的同步,还必须适当调节有功功率和无功功率以支持电网。
人机系统集成 (HSI) 是系统工程 (SE) 的必要组成部分,还是相反(即 SE 是 HSI 的必要组成部分)?这完全取决于视角!如果您是一位以技术为中心的工程师,SE 将为您提供开发技术系统的方法和工具,并且您将需要人为因素专家来开发用户界面并测试最终产品的可用性。从这个角度来看,HSI 是 SE 的必要组成部分。但是,如果您是一位以人为本的设计师,您将需要方法和工具来设计和开发系统,从设计之初到系统退役,将人机需求整合在一起。这提出了我们所说的“系统”是什么意思的问题。系统只是一种表示,有助于弄清楚人和机器的物理和认知功能和结构。本章涵盖了与 HSI 相关的几个领域,包括任务和活动分析、认知工程、组织设计和管理、功能分配、复杂性分析、建模和人在环仿真 (HITLS)。当代 HSI 设计方法由虚拟 HITLS 支持,这涉及有形性问题。开始讨论应收集的各种数据和有形性指标以开发适当的 HSI。提供了一个航空示例来说明在系统设计和开发中应如何开发 HSI
© Springer Nature Switzerland AG 2019 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
人机系统集成 (HSI) 是系统工程 (SE) 的必要组成部分,还是相反(即 SE 是 HSI 的必要组成部分)?这完全取决于视角!如果您是一位以技术为中心的工程师,SE 将为您提供开发技术系统的方法和工具,并且您将需要人为因素专家来开发用户界面并测试最终产品的可用性。从这个角度来看,HSI 是 SE 的必要组成部分。但是,如果您是一位以人为本的设计师,您将需要方法和工具来设计和开发系统,从设计之初到系统退役,将人机需求整合在一起。这提出了我们所说的“系统”是什么意思的问题。系统只是一种表示,有助于弄清楚人和机器的物理和认知功能和结构。本章涵盖了与 HSI 相关的几个领域,包括任务和活动分析、认知工程、组织设计和管理、功能分配、复杂性分析、建模和人在环仿真 (HITLS)。当代 HSI 设计方法由虚拟 HITLS 支持,这涉及有形性问题。开始讨论应收集的各种数据和有形性指标以开发适当的 HSI。提供了一个航空示例来说明在系统设计和开发中应如何开发 HSI