点合并提供了一个框架,可减少飞机在接近繁忙机场时进入“传统”等待航线的要求。通过点合并到达机场标准到达路线 (STAR) 的飞机无需雷达引导,而是沿着中间定位点 (IF) 的圆形“序列弧”飞行,然后由空中交通管制员 (ATCO) 引导到 IF 开始仪表进近。这种设计通过帮助开发和维护 ATCO 态势感知、提高自动化程度和减少管制员工作量来支持人类操作员。此外,点合并操作的好处符合 SESAR 的目标,包括提高安全性、降低 ATM 成本和增加空域容量(SESAR 联盟,2009 年)。
点合并提供了一个框架,可减少飞机在接近繁忙机场时进入“传统”等待航线的要求。通过点合并到达机场标准到达路线 (STAR) 的飞机无需雷达引导,而是沿着中间定位点 (IF) 的圆形“序列弧”飞行,然后由空中交通管制员 (ATCO) 引导到 IF 开始仪表进近。这种设计通过帮助开发和维护 ATCO 态势感知、提高自动化程度和减少管制员工作量来支持人类操作员。此外,点合并操作的好处符合 SESAR 的目标,包括提高安全性、降低 ATM 成本和增加空域容量(SESAR 联盟,2009 年)。
脱碳是走向气候中和的关键,而电气化在建设绿色社会中起着主导作用 [38]。现代社会越来越依赖电力。电力可以实现供暖/制冷、运输、供水和交通控制等各个部门之间的互联。这可以减少/消除不同部门的碳足迹。此外,从发电到配电的电力供应链也需要更加绿色。多年前,人们就开始使用可再生能源来生产清洁能源,而不是使用碳基燃料。如今,可再生能源技术已经相当成熟,绿色能源发电的贡献显著,如图 1.1 所示。从技术上讲,向可再生能源迈进需要电力系统结构在物理和控制/操作领域发生根本性变化。这是因为:(1)可再生能源发电机组的容量与传统发电厂相比非常小,(2)它们与电力电子转换器集成和控制。这些因素给更多或完全的绿色电力系统带来了重大的技术挑战。电力控制灵活性较低,
本文件以全系统方法提供有关所有 HSI 领域的指导。项目经理 (PM)、系统工程师、测试和评估 (T&E) 代表以及产品可支持性经理 (PSM) 可以使用本指南 (1) 识别和使用工具、技术、方法和方法 (TTAM) 将 HSI 活动融入系统工程实践和采购流程,以及 (2) 了解预算和利用组件 HSI 主题专家 (SME) 和 HSI 从业人员在国防系统采购范围内为项目开展 HSI 的重要性。本指南解释了 HSI 如何在项目的生命周期内最大限度地降低总拥有成本 (TOC) 并优化总系统性能 (TSP)。其中大部分信息之前出现在国防采购指南 (DAG) 第 5 章“人力规划和人机系统集成”中。DAG 已被诸如本指南之类的重点领域的单独指南所取代。
本文档以全系统方法提供有关所有 HSI 领域的指导。项目经理 (PM)、系统工程师、测试和评估 (T&E) 代表和产品可支持性经理 (PSM) 可以使用本指南 (1) 识别和使用工具、技术、方法和方法 (TTAM) 将 HSI 活动融入系统工程实践和采购过程,以及 (2) 了解预算和利用组件 HSI 主题专家 (SME) 和 HSI 从业人员在国防系统采购范围内为项目开展 HSI 的重要性。本指南解释了 HSI 如何在项目的生命周期内最大限度地降低总拥有成本 (TOC) 并优化总系统性能 (TSP)。这些信息中的大部分之前出现在国防采购指南 (DAG) 第 5 章“人力规划和人力系统集成”中。DAG 已被诸如此类的重点领域的单独指南所取代。
本文档以全系统方法为所有 HSI 领域提供指导。项目经理 (PM)、系统工程师、测试和评估 (T&E) 代表和产品可支持性经理 (PSM) 可以使用本指南 (1) 识别和使用工具、技术、方法和方法 (TTAM) 将 HSI 活动融入系统工程实践和采购流程,以及 (2) 了解预算和利用组件 HSI 主题专家 (SME) 和 HSI 从业人员在国防系统采购范围内为项目开展 HSI 的重要性。本指南解释了 HSI 如何在项目的生命周期内最大限度地降低总拥有成本 (TOC) 并优化总系统性能 (TSP)。其中大部分信息之前出现在国防采购指南 (DAG) 第 5 章“人力规划和人机系统集成”中。DAG 已被诸如本指南之类的重点领域的单独指南所取代。
实现灵活性、效率和响应性的关键是信息——让正确的人在正确的时间随时访问正确的信息。为了能够捕获和传递正确的信息,现代制造商正在以越来越快的速度消费信息技术产品 [56]。这些产品中的每一个都改善了信息的捕获、流动和传递,使企业中的某些活动能够更有效地运作。但要实现整个企业的敏捷性,信息必须在应用程序之间无缝流动,不会丢失或损坏——从捕获客户需求的系统到支持产品设计师的系统,再到支持零件设计师的系统,再到支持零件和产品制造和交付的系统,再到支持售后产品维护的系统。企业能力和绩效的每一次改进都需要新的信息流和日益复杂的信息交换。
人机系统集成 (HSI) 是系统工程 (SE) 的一个重要领域,它从最初的人因工程和人体工程学、人机交互、工程和领域经验等组成部分中产生、分离并涵盖了这些组成部分。虚拟原型和人在环仿真 (HITLS) 的当前能力和成熟度使虚拟以人为本的设计 (HCD) 能够与 SE 相结合以实现 HSI。HSI 几乎必然是基于模型的;它使用 HITLS 并需要同质化的人机系统表示。虚拟 HCD 使我们不仅能够在设计过程中而且在系统的整个生命周期中同时考虑人为因素和组织因素。这些新功能是通过数字工具实现的,这些工具支持虚拟环境,而虚拟环境又应该变得有形。数字孪生可以成为支持 HSI、运营绩效和体验集成的解决方案。因此,有形性是基于模型的 HSI (MBHSI) 中的一个关键概念,它应该既具有分析性又具有实验性,基于适当的场景和性能指标,本质上是由领域经验支持的。航空示例说明了 MBHSI 的一个实例。
• 主要目标:使用 ARIES 展示并降低到 2030 年可再生能源发电占比超过 50% 的未来能源系统的风险,该系统公正、实惠、灵活、清洁、安全、有弹性且可靠。
第 3 部分:HSI 程序 ................................................................................................................................ 6 3.1. 一般规定 ................................................................................................................................ 6 3.2. HSI 规划 ................................................................................................................................ 6 3.3. 人为因素工程 (HFE) 领域 ............................................................................................. 7 3.4. 人员领域 ............................................................................................................................. 8 3.5. 居住性领域 ............................................................................................................................. 9 3.6. 人力领域 ............................................................................................................................. 9 3.7. 培训领域 ............................................................................................................................. 10 3.8. 安全和职业健康 (SOH) 领域 ............................................................................................. 11 3.9. 部队防护和生存能力 (FP&S) 领域 ............................................................................................. 11