摘要 — 在当前的嘈杂中尺度量子 (NISQ) 量子计算时代,量子比特技术容易出现缺陷,从而导致各种错误,例如门错误、退相干/失相、测量错误、泄漏和串扰。这些错误对在 NISQ 设备中实现无错误计算提出了挑战。针对此问题提出的解决方案是量子纠错 (QEC),旨在通过三步过程纠正损坏的量子比特状态:(i) 检测:识别错误的存在,(ii) 解码:精确定位受影响量子比特的位置,以及 (iii) 校正:将故障量子比特恢复到其原始状态。QEC 是一个不断扩展的研究领域,涵盖了复杂的概念。在本文中,我们旨在全面回顾量子纠错的历史背景、现状和未来前景,以满足对量子物理及其相关数学概念不太熟悉的计算机科学家的需求。在本研究中,我们 (a) 解释 QEC 的基本原理并探索用于纠正量子比特错误的现有量子纠错码 (QECC),(b) 探索这些 QECC 在实施和纠错质量方面的实用性,以及 (c) 强调在当前 NISQ 计算机环境下实施 QEC 所面临的挑战。索引术语 — 量子纠错、量子计算、纠错码
摘要。这是一篇说明性文章,旨在向读者介绍量子纠错的底层数学和几何学。存储在量子粒子上的信息会受到环境噪声和干扰的影响。量子纠错码可以消除这些影响,从而成功恢复原始量子信息。我们简要介绍了必要的量子力学背景,以便能够理解量子纠错的工作原理。我们继续构建量子码:首先是量子比特稳定器码,然后是量子比特非稳定器码,最后是具有更高局部维度的码。我们将深入研究这些代码的几何形状。这使我们能够有效地推导出代码的参数,推导出具有相同参数的代码之间的不等价性,并提供了一个推导出某些参数可行性的有用工具。我们还包括关于量子最大距离可分离码和量子 MacWilliams 恒等式的章节。
目前,量子计算机受到限制,因为纠缠态非常脆弱。如果其中一个量子比特退相干,那么纠缠就会丢失。如果使用多个门,小错误可能会累积起来。量子纠错方案的目标是使用额外的量子比特来纠正错误。传统上,假设我们发送 111 而不是 1,发送 000 而不是 0。这称为重复码。如果有一个单比特错误,那么可以使用三个比特中的另外两个来检测和纠正错误。需要三个比特中的 2 个或 3 个比特有错误才能使错误不被检测到。量子计算有类比吗?一个问题是量子比特实际上不是 1 或 0,而是具有描述系统处于其中一种状态的可能性的概率连续体。在两种状态的叠加态中,两部分之间的相对相位很重要。
引言。对外部噪声的极端敏感性是构建和操作大规模量子装置的主要障碍之一。量子误差校正(QEC)通过在更大的空间中编码量子信息来解决这一问题,以便可以检测和纠正错误(例如,参见参考文献 [1](第 10 章)和参考文献 [2])。现有的 QEC 方案主要关注局部和不相关的错误(或具有有限范围相关的错误),例如参见 [3,4]。然而,例如由于与玻色子浴的耦合 [5 – 7] ,长程关联会对 QEC 的性能产生负面影响 [8,9] 。最近有研究表明,宇宙射线事件 (CRE) 会在超导量子比特中引起灾难性的关联误差 [10 – 13]。高能射线撞击后,会产生声子并在基底中扩散。这些声子随后在超导材料中形成准粒子,进而引起量子比特衰变 [12] 。尽管这些事件很少见,但它们的影响却是毁灭性的,因为它们会导致芯片中所有量子比特发生快速相关弛豫( T 1 误差),从而基本上擦除编码的量子信息 [12] ,这对于可能需要数小时的长时间计算任务尤其有害 [14] 。此外,CRE 的不利影响不仅限于超导量子比特。半导体自旋量子比特 [15] 和基于马约拉纳费米子的量子比特 [16,17] 也分别受到由 CRE 引起的电荷噪声和准粒子中毒的影响。一种针对系统减少 CRE 影响的方法是改变设备的设计,例如,引入声子和准粒子陷阱 [18 – 20] 并增强设备中的声子弛豫 [17] 。在本信中,我们采用不同的方法,使用分布式纠错方案来检测和纠正
随着电子设备的小型化,辐射环境中的内存故障数量也在增加。一维 (1D) 纠错码 (ECC) 无法有效缓解这些问题,需要二维 (2D)-ECC 来提供卓越的纠错能力,同时减少能耗和面积消耗。该领域的出版物数量大幅增加,需要开展一项研究来指导和资助研究决策,主要是为了确定一种比较和评估 ECC 的标准化方法。我们提出了系统文献综述 (SLR),以研究用于缓解内存故障的 2D-ECC 的最重要特征。该 SLR 揭示了最常用的 ECC、数据大小和冗余开销、编码器和解码器实现技术、故障注入方法和评估指标。此外,我们提取了一些 ECC 趋势,例如在解码器内重复使用编码器,并以三维 (3D)-ECC 为目标来提高纠错效率。实验结果描述了对该科学界具有重要价值的重要研究决策。
• H 的列对应于 G 中的位节点。 • H 的行对应于 G 中的校验节点。 • 当且仅当 H 的单元格 i,j 中的条目非零时,G 中的位 i 和校验 j 之间存在边。
量子纠错技术是消除量子计算机运行时噪声的重要方法。针对噪声带来的问题,本文利用强化学习对Semion码的缺陷进行编码,并利用经验重放技术实现译码器的设计。Semion码是与Kitaev toric码具有相同对称群Z 2 的量子拓扑纠错码,利用纠错码的拓扑特性将量子比特映射到多维空间,计算出译码器的纠错准确率为77.5%。计算拓扑量子Semion码的阈值,根据码距的不同,得到不同的阈值,当码距为d = 3, 5, 7时,p阈值= 0.081574,当码距为d = 5, 7, 9时,p阈值= 0.09542。并设计Q网络来优化量子电路门的代价,比较不同阈值下代价降低的大小。强化学习是设计Semion码译码器、优化数值的重要方法,为未来的机器工程译码器提供更通用的错误模型和纠错码。
量子信息的存储和处理易受外部噪声影响,从而导致计算错误。抑制这些影响的有效方法是量子纠错。通常,量子纠错以离散轮次执行,使用纠缠门和对辅助量子位的投影测量来完成每轮纠错。在这里,我们使用直接奇偶校验测量以资源高效的方式实现连续量子位翻转校正码,消除纠缠门、辅助量子位及其相关错误。FPGA 控制器在检测到错误时主动纠正错误,平均位翻转检测效率高达 91%。此外,该协议将受保护逻辑量子位的弛豫时间增加了 2.7 倍,超过裸量子位的弛豫时间。我们的结果展示了多量子位架构中资源高效的稳定器测量,并展示了连续纠错码如何应对实现容错系统的挑战。
M2 ICFP - 量子信息理论 2021-2022 年 环面代码的逻辑运算符。为了描述环面代码的逻辑量子位,我们需要了解 C 1 / C 2 的等价类,即不是边界的循环。确实存在两个不等价的此类循环家族,对应于环面周围的两种环。这些循环是同调非平凡的,这意味着它们不能变形(通过添加边界)以产生零循环。因此,环面代码是拓扑代码的一个例子:量子代码的性质来自底层流形的拓扑。事实上,环面代码是由环面的特定单元化给出的,即环面在斑块中的分解。标准环面代码使用方形斑块,但也可以选其他类型的斑块,例如三角形。
CSS 代码(以其发明者 Calderbank、Shor、Steane 的名字命名)构成了所有稳定器代码的一个有趣子类,其中稳定器组的生成器要么是 Pauli-X 的乘积,要么是 Pauli-Z 的乘积。这是一个有吸引力的限制,因为现在只需要在 X 类型和 Z 类型生成器之间检查生成器之间的交换性条件,因为 X 类型生成器和 Z 类型生成器显然可以相互交换。在这种情况下,两种类型的生成器都用二进制字描述(在与 X 或 Z 类型运算符相对应的坐标处为 1)。
