应用程序。比率,直接比例,逆比例及其相关问题。功能线性函数:线性方程的应用,求解线性方程的系统。图形工具及其在不同学科中的应用程序。一个变量中的代数表达式,线性和二次方程式,它们在
真实对称矩阵L的对角化:6小时正交矩阵 - 对角线形式向对角矩阵的正交转换 - 通过正交转换将二次形式的二次形式还原为规范形式。一阶普通微分方程L:11小时莱布尼兹方程 - 伯努利方程 - 一阶和较高程度的方程 - clairauts形式 - 应用:正交轨迹。高阶线性微分方程L:恒定系数的第二和更高顺序的11小时线性方程 - Euler's and Legendre的线性方程 - 参数变化方法 - 一阶同时线性方程,具有恒定系数 - 应用 - 应用。几个变量的函数L:11小时总导数 - 泰勒的串联扩展 - 两个变量的功能的最大值和最小值 - 受约束的最大值和最小值:Lagrange的乘数方法具有单个约束 - 雅各布人。
课程描述MAP2302 |简介微分方程| 3.00学分本课程强调了普通的微分方程,一阶线性和非线性方程和应用的解决方案方法;具有恒定系数,差分操作员方法,高阶线性方程的均匀和非均匀线性方程;拉普拉斯变换及其属性,基本存在定理,串联解决方案,一阶方程的数值解决方案,初始和边界价值问题,振动和波浪以及自主系统的介绍。计算课程。
TGT形式的实际数字:自然数,整数,数字线上的理性数字的表示。通过连续的放大倍率在数字线上表示终止 /非终止重复小数的代表。有理数作为重复 /终止小数。非经常性 /非终止小数的示例。存在非理性数字(非理性数字)及其在数字线上的表示。解释每个实际数字都由数字行上的唯一点表示,相反,数字行上的每个点代表一个唯一的实际数字。具有整体权力的指数定律。具有正真实基础的理性指数。实数的合理化。欧几里得的分区引理,算术的基本定理。根据终止 /非终止重复小数的延长有理数的扩展。基本数理论:Peano的公理,诱导原理;第一本金,第二原理,第三原理,基础表示定理,最大的整数函数,可划分的测试,欧几里得的算法,独特的分解定理,一致性,中国余数定理,数量的除数总和。Euler的基本功能,Fermat和Wilson的定理。矩阵:R,R2,R3作为R和RN概念的向量空间。每个人的标准基础。线性独立性和不同基础的例子。R2的子空间,R3。 翻译,扩张,旋转,在点,线和平面中的反射。 基本几何变换的矩阵形式。R2的子空间,R3。翻译,扩张,旋转,在点,线和平面中的反射。基本几何变换的矩阵形式。对特征值和特征向量的解释对这种转换和不变子空间等特征空间的解释。对角线形式的矩阵。将对角形式还原至命令3的矩阵。使用基本行操作计算矩阵倒置。矩阵的等级,使用矩阵的线性方程系统的解决方案。多项式:一个变量中多项式的定义,其系数,示例和反示例,其术语为零多项式。多项式,恒定,线性,二次,立方多项式的程度;单一,二项式,三项官员。因素和倍数。零。其余定理具有示例和类比整数。陈述和因素定理的证明。使用因子定理对二次和立方多项式的分解。代数表达式和身份及其在多项式分解中的使用。简单的表达式可还原为这些多项式。两个变量中的线性方程:两个变量中的方程式简介。证明两个变量中的线性方程是无限的许多解决方案,并证明它们被写成有序成对的真实数字,代数和图形解决方案。两个变量中的线性方程对:两个变量中的线性方程。不同可能性 /不一致可能性的几何表示。解决方案数量的代数条件。 二次方程:二次方程的标准形式。解决方案数量的代数条件。二次方程:二次方程的标准形式。通过取代,消除和交叉乘法,将两个线性方程对两个变量的求解。
指令3 L+1T小时每周的时间持续时间查看3小时请参见60分CIE 40分4学分4课程目标:本课程的目的是:1。通过矩阵方法解释线性方程系统的解决方案。2。讨论平均值定理。3。解释了两个变量的局部衍生物和函数的极端值。4。解释曲线的形状,它们的区域和革命量。5。讨论该系列的收敛性和分歧。课程成果:本课程完成后,学生将能够达到1。将矩阵方法应用于求解线性方程的系统。2。分析平均值定理和曲率的几何解释。3。确定两个变量功能的极端值。4。找到曲线,表面区域和革命的体积的形状。5。检查无限序列的收敛性和差异。共po关节矩阵:
引言 ;一些基本函数的逆变换 ;求逆变换的一般方法 ;求逆拉普拉斯变换的偏分式和卷积定理 ;用于求常系数线性微分方程和联立线性微分方程的解的应用 第 3 单元:傅里叶变换 [09 小时] 定义 - 积分变换 ;傅里叶积分定理(无证明) ;傅里叶正弦和余弦积分 ;傅里叶积分的复数形式 ;傅里叶正弦和余弦变换 ;傅里叶变换的性质 ;傅里叶变换的帕塞瓦尔恒等式。 第 4 单元:偏微分方程及其应用 [09 小时] 通过消去任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于求一维解的应用