自噬是一个高度调节的多步骤过程,几乎在所有细胞中都在基础水平上发生。尽管已经在几种病理学中描述了自噬过程的放松管制,但自噬在癌症作为细胞保护机制中的作用目前得到了实验和临床证据的良好确定和支持。我们对自噬过程的分子机制的理解在很大程度上有助于定义我们如何利用这一过程来改善癌症疗法的好处。广泛记录自噬在肿瘤对化学疗法的耐药性中的作用,而新兴数据将自噬作为对放射治疗,靶向治疗和免疫疗法的癌症抗性的机制。因此,操纵自噬已成为克服肿瘤对各种抗癌疗法的耐肿瘤性的有希望的策略,并且目前在几项临床试验的联合疗法中评估了自噬调节剂。在这篇综述中,我们将总结我们对遗传和药理调节自噬基因和蛋白质的影响的当前知识,这些基因和蛋白质涉及自噬过程的不同步骤,对各种癌症疗法的治疗益处。我们还将布里人讨论开发有效和选择性自噬抑制剂的挑战和局限性,这些抑制剂可用于正在进行的临床试验中。
1Idipaz,Idipaz,马德里,西班牙。。4马德里,马德里,西班牙。。.7机构研究所。。区域3癌。Ciberer,Ciberer,马德里,西班牙。西班牙马德里的自治大学。吉米斯·迪亚兹(JiménezDíaz),西班牙马德里。西班牙马德里。
哺乳动物雷帕霉素靶标 (mTOR) 抑制剂依维莫司、替西罗莫司和雷帕霉素具有广泛的临床应用;然而,与其他化疗药物一样,耐药性的产生限制了它们的有效性。一种假定的耐药机制是促进自噬,这是抑制 mTOR 信号通路的直接结果。自噬主要被认为是一种细胞保护性生存机制,通过该机制,细胞质成分被回收利用以产生能量和代谢中间体。依维莫司和替西罗莫司诱导的自噬似乎发挥了很大的保护作用,而雷帕霉素似乎以细胞毒性作用为主。在这篇综述中,我们概述了不同肿瘤模型中响应 mTOR 抑制剂而诱导的自噬,以确定自噬靶向是否可以作为与 mTOR 抑制相关的辅助疗法具有临床应用。
抽象的终端选择器是转录因子(TF),它们在发育过程中建立并在整个生命中保持有丝分裂神经元身份。我们先前表明,秀丽隐杆线虫胆碱能运动神经元(MNS)的末端选择器UNC-3/EBF间接起作用,以防止替代性神经元认同(Feng等,2020)。在这里,我们在全球范围内确定UNC-3的直接目标。出乎意料的是,我们发现MN中的UNC-3目标套件在不同的生命阶段进行了修改,从而揭示了终端选择器函数中的“时间模块”。在所有幼虫和成人阶段中,unc-3是连续表达各种蛋白质类所必需的(例如,受体,转运蛋白)对于Mn功能至关重要。然而,仅在幼虫和成年后期,需要UNC-3才能保持MN特异性TF的表达。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。 另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。
•LFP电池:化学电源,用于存储和电源的化学电源•监视:根据客户的要求,可选组件•CH。&disch。管理:电荷和放电电路的当前限制•细胞保护:针对短路,过度充电,过度流动等。•单元平衡:系统均衡与那些不平衡的LFP单元格
抽象的许多生物在自然界中具有进化的机制,可以耐受严重的低氧或缺血,包括具有冬眠能力的北极松鼠(AGS)。尽管AGS中的低氧或缺血耐受性涉及生理适应性,但对内在AGS细胞弹性对代谢应激的弹性的关键细胞机制知之甚少。通过基于细胞存活的cDNA表达筛选在神经祖细胞中,我们确定了AGS ATP5G1的遗传变异,该变异赋予了细胞对代谢应激的弹性。ATP5G1编码线粒体ATP合酶的亚基。在小鼠细胞中的异位表达和内源性AGS基因座的CRISPR/CAS9基础编辑表明,一个AGS特异性氨基酸取代在介导AGS ATP5G1的细胞保护过程中的因果作用。AGS ATP5G1通过调节线粒体形态变化和代谢功能来促进代谢应激的弹性。我们的结果从哺乳动物的冬眠器中确定了ATP5G1的自然发生的变体,该变体对代谢应激有助于固有的细胞保护作用。
诱导抗氧化蛋白和中和反应性亲电试剂的 2 期解毒酶是防止致癌的重要机制。正常细胞提供多方面的途径来严格控制 NF-E2 相关因子 2 (NRF2) 介导的基因表达,以应对一系列内源性和外源性致癌分子的攻击。NRF2 被其激活剂瞬时激活能够诱导 ARE 介导的细胞保护蛋白,这些蛋白对于防止各种毒性和氧化损伤至关重要,因此 NRF2 激活剂在癌症化学预防中具有功效。由于 NRF2 具有细胞保护功能,它可以像天使一样保护正常细胞免受致癌物的侵害,但当保护作用作用于癌细胞时,它会产生无敌的癌细胞并在肿瘤进展中扮演魔鬼角色。事实上,在多种癌症中都发现了NRF2的异常激活,这为癌细胞的增殖和存活创造了有利的环境,并导致耐药性,最终导致患者的临床预后不良。因此,药物抑制NRF2信号传导已成为一种有前途的癌症治疗方法。本综述旨在汇编NRF2的调控机制及其在癌症中的双刃剑作用。此外,我们还总结了NRF2调节剂,特别是植物化学物质在化学预防和癌症治疗中的研究进展。
综合应激反应 (ISR) 是细胞保护自己免受环境应激的重要机制。ISR 的核心是一组监测应激条件的相关蛋白激酶,例如 Gcn2 (EIF2AK4) 可识别营养限制,诱导真核翻译起始因子 2 (eIF2) 的磷酸化。Gcn2 磷酸化 eIF2 可降低大部分蛋白质合成,节省能量和营养,同时优先翻译应激适应基因转录本,例如编码 Atf4 转录调节因子的转录本。虽然 Gcn2 对细胞保护免受营养应激至关重要,并且其在人类中的消耗会导致肺部疾病,但 Gcn2 还可能导致癌症进展并在慢性应激期间促进神经系统疾病。因此,已经开发出特定的 ATP 竞争性 Gcn2 蛋白激酶抑制剂。在本研究中,我们报告了一种这样的 Gcn2 抑制剂 Gcn2iB 可以激活 Gcn2,并且我们探究了这种激活发生的机制。低浓度的 Gcn2iB 会增加 eIF2 的 Gcn2 磷酸化并增强 Atf4 的表达和活性。重要的是,Gcn2iB 可以激活缺乏功能性调节域或具有某些激酶域替换的 Gcn2 突变体,这些突变体源自缺乏 Gcn2 的人类患者。其他 ATP 竞争性抑制剂也可以激活 Gcn2,尽管它们的激活机制有所不同。这些结果为 eIF2 激酶抑制剂在治疗应用中的药效学提供了警告。旨在直接激活 Gcn2 的激酶抑制剂化合物,甚至是功能丧失的变体,可以提供缓解 Gcn2 和 ISR 其他调节剂缺陷的工具。
与恶性疟原虫的蛋白有关的蛋白质的结构和功能表征。这是第一个重点是PFHSP70-1在蛋白质功能和稳定性中的生物物理表征,对寄生虫的细胞保护作用。结果支持破坏蛋白质的C末端尾巴相互作用以开发新抗菌素的策略。还确定了PFHSP70-1和恶性疟原虫HSP40(PFJ1)之间功能相互作用的第一个证据。这些在疟疾领域的研究工作与“健康印度”的国家任务保持一致,博士研究获得了全球认可,并于2009年获得了Eli-Lilly亚洲杰出论文奖(一等奖)。
小檗碱是从天然植物黄连中提取的一种主要生物活性化合物,几十年来在中国被广泛认为具有抗糖尿病作用。其他类型的药理活性,如抗炎、抗菌、降血脂和抗癌作用也已被研究。在细胞水平上,这些药理活性大多是抑制作用。然而,小檗碱的细胞保护作用也在不同类型的细胞中观察到,如神经元、内皮细胞、成纤维细胞和 β 细胞。这种矛盾的结果可能与小檗碱在细胞内的特性和分布密切相关,可以用线粒体兴奋效应(一种特殊的兴奋效应)来机械地解释。在本文中,我们回顾了线粒体兴奋反应,并评估了小檗碱诱导的作用和可能涉及的信号通路。这些发现可能有助于小檗碱更好地在临床上应用,并表明在临床应用中应谨慎考虑一些针对线粒体的常规药物。