X射线反射率(XRR)被广泛用于研究硬和软凝结物质材料的表面和界面,包括2D材料,纳米材料和生物系统。它允许沿其正常的横向平均电子密度曲线沿其正态分子延伸,并具有子角度的精度。[4-6]这有助于确定各种参数,包括表面粗糙度,单层或多层材料的结构以及毛细血管对液体表面的影响。高毛利率同步X射线束可以在环境条件下实时解决分子水平的材料结构,而其他表面敏感的实验技术几乎无法访问。[7]此类实验的示例是使用专用设备和样品单元的液体表面和界面进行研究。[8–11]但是,与液体的XRR相关的特定问题。液体和支撑之间的润湿角会引起样品液体的曲率,这通常使数据分析复杂化。[12]可以通过利用能够使用大面积样品(例如Langmuir槽,[13])使用特殊数据处理方法的样本环境来解决此问题。[15]但是,在某些情况下,可以有利地利用样品曲率,例如Festersen等。[15]使用宽平行的合成光束将XRR曲线记录在“一击”中,但在散射矢量q的范围内有限。[17]这些系统正在促进高质量材料的生长[18],但同时在实验上可能非常苛刻。最新的样本环境的发展[16]发表于原位和/或操作XRR研究开放了新的机会,例如,通过化学蒸气沉积(CVD)对2D材料在液态金属催化剂(LMCAT)上的生长过程中对2D材料进行了研究。[19]必须适应高运行温度,高材料蒸发以及在大气压下暴露于反应性气体的混合物中。此外,它们仅限于有限尺寸的样本
药物的靶向输送是成功治疗肿瘤等严重疾病的关键方面。为了实现肽类药物的高特异性和低尺寸限制的精确输送,合成的 3 型分泌系统 (T3SS) 由沙门氏菌致病岛-1 (SPI-1) 中编码的天然遗传系统改造而成,该系统不包含毒力效应物。在这里,我们测试了合成 T3SS 作为肽类药物输送机制的潜力,因为它具有模块化特性。首先,将合成 T3SS 的遗传系统引入非天然宿主大肠杆菌,之所以选择该宿主是因为它缺乏沙门氏菌驱动的毒力因子。接下来,测试了 Noxa 的线粒体靶向结构域 (MTD) 作为具有抗肿瘤活性的货物蛋白。为此,对编码 MTD 的基因进行工程改造,使其通过合成 T3SS 分泌,从而在 N 端得到标记的 MTD。当将携带合成 T3SS 和 MTD 的质粒大肠杆菌注射到肿瘤小鼠体内时,诱导后在肿瘤组织中可以清楚地检测到 N 端带有分泌标签的 MTD。此外,携带的 MTD 的细胞毒性活性可减缓肿瘤动物的肿瘤生长和死亡率。因此,这项研究通过植入专用的递送系统,增强了生物治疗细菌在肿瘤治疗中的应用。
X 连锁的 Opitz BBB/G 综合征 (OS) 是一种单基因疾病,其症状在胚胎发育早期就已出现。OS 是由 X 连锁基因 MID1 的致病变异引起的。疾病相关变异分布于整个基因位点,除包含 E3 泛素连接酶活性的 N 端 RING 结构域外。通过使用基因组编辑的人类诱导多能干细胞系,我们在此表明,缺乏含有 MID1 RING 结构域的异构体会导致人脑类器官出现严重的模式化缺陷。我们观察到明显的神经源性缺陷,神经组织减少,同时脉络丛样结构增多。转录组分析揭示了模式化通路在很早的时候就失调了,甚至在神经诱导之前就失调了。值得注意的是,观察到的表型与 MID1 完全敲除类器官中观察到的表型形成鲜明对比,表明存在导致模式缺陷的不同机制。这些表型的严重性和早期发作可能解释了为什么没有携带编码 N 端 RING 域的 MID1 基因外显子 1 中的致病变异的患者。
摘要 背景/目的:肺炎克雷伯菌在医疗器械上形成的生物膜会增加感染风险。菌毛和荚膜多糖 (CPS) 是参与生物膜形成的重要因素。据报道,肺炎克雷伯菌 NTUH-K2044 中的 KP1_4563 是一种含有 DUF1471 结构域的小蛋白,可抑制 3 型菌毛功能。在本研究中,我们旨在确定 KP1_4563 同源物在每个肺炎克雷伯菌分离株中是否保守,以及它在克雷伯菌生物膜中起什么作用。方法:比较了肺炎克雷伯菌 NTUH-K2044、CG43、MGH78578、KPPR1 和 STU1 的基因组。肺炎克雷伯菌 STU1 中的 KP1_4563 同源物被命名为 orfX。对来自肺炎克雷伯菌 STU1 和一个临床分离株 83535 的野生型和 orfX 突变菌株的生物膜进行了量化。通过 RT-qPCR 研究了 3 型菌毛基因 mrkA 和 mrkH 的转录水平。通过蛋白质印迹法观察野生型和 orfX 突变体的 MrkA。通过透射电子显微镜 (TEM) 观察细菌细胞的形态。对细菌 CPS 进行了量化。结果:orfX 的基因和上游区域在五种肺炎克雷伯菌分离株中是保守的。orfX 的缺失增强了克雷伯菌生物膜的形成。然而,野生型和 orfX 突变体之间 mrkA 和 mrkH 的 mRNA 量以及 MrkA 蛋白的水平没有差异。相反,orfX 突变体中的 CPS 量增加,
*通讯地址:sascha.hoogendoorn@unige.ch 摘要 从表型筛选中得到的小分子命中物的靶标反卷积是一项重大挑战。许多筛选都表明,人们已进行许多筛选来寻找 Hedgehog (Hh) 信号通路的抑制剂,Hedgehog (Hh) 信号通路是一条与健康和疾病有着诸多关系的主要发育通路,其中有许多命中物但很少有确定的细胞靶标。我们在此提出一种基于蛋白水解靶向嵌合体 (PROTAC) 结合无标记定量蛋白质组学的靶标识别策略。我们开发了一种基于下游 Hedgehog 通路抑制剂-1 (HPI-1) 的 PROTAC,HPI-1 是一种具有未知细胞靶标的表型筛选命中物。使用我们的 Hedgehog 通路 PROTAC (HPP),我们确定并验证了 BET 溴结构域是 HPI-1 的细胞靶标。此外,我们发现 HPP-9 通过延长 BET 溴结构域降解时间,具有作为长效 Hh 通路抑制剂的独特作用机制。总之,我们提供了一种强大的基于 PROTAC 的靶标反卷积方法,该方法回答了 HPI-1 的细胞靶标这个长期存在的问题,并产生了第一个作用于 Hh 通路的 PROTAC。主要 Hedgehog 通路是一个复杂的细胞信号级联,可调节胚胎发育过程,例如模式化,以及干细胞维持和组织稳态。1,2 Hedgehog 信号转导生理水平的失调会导致发育障碍以及各种癌症的发生和进展,最显著的是基底细胞癌和髓母细胞瘤。3,4 正常条件下的通路激活是由其中一种 Hedgehog 蛋白 (IHH、DHH、SHH) 与受体 Patched (PTCH1) 结合启动的。 5–7 HH 与 PTCH1 结合可释放后者对 Smoothened (SMO) 的抑制作用。8,9 进一步的激活步骤包括与融合抑制因子 (SUFU) 结合的 GLI2/3 转录因子通过初级纤毛的尖端运输并积累。10–13 GLI 转录因子加工成其转录活性形式,然后导致 Hedgehog 靶基因的转录,其中包括正调节剂 Gli1 和负反馈回路中的 Ptch1。14,15 目前,唯一获得临床批准用于对抗 Hh 通路驱动癌症的药物是针对 SMO(vismodegib、sonidegib)的药物。由下游通路激活驱动的癌症本质上对这些药物不敏感,并且最初有反应的肿瘤获得性耐药很常见。16–
碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
1 趋化因子信号传导组,免疫学和肿瘤学系,国家生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 2 林雪平大学卫生、医学和护理科学系诊断和专科医学科,58185,林雪平,瑞典。 3 玛格丽塔萨拉斯生物研究中心(CIB-CSIC),28040,马德里,西班牙。 4 生物计算部门,国家生物技术中心(CNB-CSIC),Cantoblanco 校区,28049 马德里,西班牙。 5 西班牙马德里公主大学医院(IIS-Princesa)健康研究所免疫学系,28006。 6 加拿大安大略省汉密尔顿市麦克马斯特大学施罗德过敏和免疫学研究所麦克马斯特免疫学研究中心 (MIRC) 医学系,邮编 L8S 4L8。 7 弗朗西斯科维多利亚大学(UFV)实验科学学院,28223,马德里,西班牙。 8 B 淋巴细胞动力学,免疫学和肿瘤学系,国家生物技术中心 (CNB)/CSIC,坎托布兰科校区,28049,马德里,西班牙。 9 神经退行性疾病生物医学研究网络中心(CIBERNED),卡洛斯三世健康研究所,28029 马德里,西班牙 10 X 射线晶体学部门,大分子结构系,国立生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 * 通讯作者:Mario Mellado,西班牙马德里 28049 Cantoblanco, Darwin 3,CNB/CSIC 免疫学和肿瘤学系。电话:(+34)91/585-4852;传真:(+34)91/372-0493;邮箱: mmellado@cnb.csic.es
R2非长末端重复(非LTR)逆转录子是多细胞真核生物中分布最广泛的移动遗传元件之一,并且对在人类基因组的转基因补充中的应用显示出希望。他们以精致的特异性将新基因插入28S核糖体DNA中的保守位点。r2进化枝是由逆转录子编码的蛋白的N末端的锌指(ZF)数量定义的,该蛋白被认为是为添加赋予DNA位点特异性的。在这里,我们阐明了进化枝之间的R2 N末端结构域的DNA识别的一般原则,并具有广泛的,具体的识别,仅需要一个或两个紧凑型域。DNA结合和保护测定法证明了广泛共享以及进化枝特异性的DNA相互作用。基因插入测定识别足以用于目标位点插入的N末端结构域,并揭示了进化枝特异性ZFS中第二链裂解或合成中的作用。我们的结果对理解非LTR逆转录座插入机制的进化多样化以及基于逆转录座子的基因疗法的设计具有意义。
尽管新的抗癌药物不断进入市场,但 2021 年全球仍有超过 1000 万人死于癌症 1 ,其中肺癌、胃癌、乳腺癌和胰腺癌是中国和美国癌症相关死亡人数最多的疾病 2,3 。因此,迫切需要改进治疗干预措施。抗体-药物偶联物 (ADC) 是一种新型药物,它利用单克隆抗体对癌细胞上表达的靶抗原的特异性,以实现强效细胞毒性有效载荷的靶向递送。最近,已经开发出针对两种肿瘤相关抗原 (TAA) 的双特异性 ADC (BsADC),以进一步与其他目前可用的 HER3 mAb 一起扩增肿瘤 c。随后将这些 bsAb 通过蛋白酶可裂解的连接体与单甲基金圣草 E (MMAE) 结合,以获得一流的 BsADC 候选药物 DM002。 DM002 候选药物在肺癌、乳腺癌、胃癌和胰腺癌的多种 CDX 和 PDX 模型中表现出强大的抗肿瘤活性;最值得注意的是,DM002 候选药物在 BP0508 肺癌 PDX 模型中的表现优于基准 ADC。总之,这些数据表明 DM002 将成为 HER3 和 MUC1 同时表达肿瘤患者的有前途的治疗药物。
1 辛辛那提儿童医院研究基金会分子与发育生物学研究生项目,美国俄亥俄州辛辛那提 45229;2 辛辛那提大学医学院医学科学家培训项目,美国俄亥俄州辛辛那提 45229;3 辛辛那提大学医学院辛辛那提儿童医院医学中心发育生物学科,美国俄亥俄州辛辛那提 45229;4 美国国立卫生研究院国家眼科研究所眼科遗传学和视觉功能分部,美国马里兰州贝塞斯达 20892;5 辛辛那提大学生物医学工程系,美国俄亥俄州辛辛那提 45219;6 辛辛那提大学医学院儿科系,美国俄亥俄州辛辛那提 45229; 7 美国俄亥俄州辛辛那提市辛辛那提儿童医院医学中心生物医学信息学部,辛辛那提 45229;8 美国俄亥俄州辛辛那提市辛辛那提大学医学院生物医学信息学系,辛辛那提 45229