1 威斯康星大学麦迪逊分校生物化学系,美国威斯康星州麦迪逊 53706 2 杜克大学生物医学工程系,美国北卡罗来纳州达勒姆 27708 3 系统生物学研究所,美国华盛顿州西雅图 98109 4 华盛顿大学分子工程研究生课程,美国华盛顿州西雅图 98195 5 华盛顿大学生物工程系,美国华盛顿州西雅图 98195 6 华盛顿大学基因组科学系,美国华盛顿州西雅图 98195 7 华盛顿大学电子科学研究所,美国华盛顿州西雅图 98195 8 威斯康星大学麦迪逊分校化学与生物工程系,美国威斯康星州麦迪逊 53706 9 威斯康星大学麦迪逊分校细菌学系,美国威斯康星州麦迪逊 53706 10 威斯康星大学麦迪逊分校生物医学工程系美国威斯康星州麦迪逊 53706
结果:是存在的过程,但根据植物和植物的面积而对不同的细菌进行了不同。降低了TPC和TMC,最多可在2-3天内返回至IS水平。IS对冷却器中微生物的影响各不相同,降低了2-4 log 10,需要2到4周才能返回前IS水平。混合了靠近制造线的结果,一种植物的变化几乎没有显着变化,而另一个植物则显示了4至6 log 10减少。对QAC的耐药性和植物之间以及植物区域之间的生物膜对沙门氏菌的保护。在该属水平上对细菌的社区分析表明,物种的多样性降低,而破坏导致了新的社区组成,在某些情况下,即使在15到16周之后,这些组成也没有恢复到前州。
摘要:泵送热能存储(PTE)的研究引起了科学界的极大关注。它更好地适合特定应用程序,以及对创新储能技术开发的日益增长的需求,这是引起这种兴趣的主要原因。文献中使用了Carnot Battery的名称(CB)来参考PTES系统。目前的论文旨在开发包括高温两阶段热泵(2SHP),中间热储存(潜热)和有机兰金循环(ORC)的CB的能量分析。从广义的角度来看,考虑到HP的两种热量输入:地面中的冷储液(在全年的恒温为12℃)和80℃(热整合PTES-TI-PTES)中进行热量存储。第一部分定义了HP和ORC的简单模型,其中仅考虑周期的效率。在此基础上,识别存储温度和流体的种类。然后,考虑到更现实的模型,热交换器的恒定大小以及扩展器和压缩机的外部设计操作,计算了预期的功率(往返)效率。该模型是使用工程方程求解器(EES)软件(学术专业V10.998-3D)模拟的,用于几种工作流体和不同的温度水平,用于中级CB热量存储。此外,当HP工作流体(在同一情况下)更改为R1336MZZ(Z)时,往返全负载和零件载荷效率分别降至72.4%和46.2%。结果表明,基于TI-PTES操作模式(甲苯作为HP工作流体)的场景达到了全负载时达到80.2%的最高往返效率,而在零件负载(25%的负载的25%)中,往返额效率为50.6%。这项研究的发现提供了基于混合构成线性编程(MILP)算法的热性经济优化模型,可以在热经济优化模型中进行线性性和使用。
1 ,纳瓦拉大学,圣塞巴斯蒂大学工程学院,圣塞巴斯蒂,AN,20018年,西班牙2,2生物医学工程中心,大学校园,大学纳瓦拉纳瓦拉,纳瓦拉31009,西班牙31009,西班牙31西班牙3号研究所,数据科学与人工智能学会(DATARARRA),纳瓦尔(Dataii Intifellient of Navarra)马德里28660号政治上的政治ecnica de Madrid大学,西班牙5地区和卫生局,卡洛斯三世卫生研究所,马德里28029,西班牙7,西班牙7营养学系,研究中心,研究中心,研究中心,研究中心,埃迪卡,布拉纳达大学的营养与技术研究所,布拉纳达研究所,研究所。 div>格拉纳达,格拉纳达大学,格拉纳达大学,18012年,西班牙对应。 div>纳瓦拉大学工程学院生物医学工程与科学系,纳瓦拉大学,曼努埃尔·德拉迪扎巴尔13号,圣塞巴斯蒂,AN,20018年,西班牙。 div>电子邮件:fplanes@technun.es(F.J.P。) div>电子邮件:fplanes@technun.es(F.J.P。) div>
摘要地球的大部分树木都依赖于外生菌根真菌(ECMF)释放并提供的关键土壤养分,并且地球上的所有土地植物都与Bacte RIA相关,这些植物可以帮助它们在自然中生存。然而,我们对ECMF的存在如何修饰土壤细菌群落,土壤食物网和根化学的理解需要直接的实验证据,以理解ECMF在地下植物中可能产生的影响。为此,我们在接种ECMF和本地森林细菌群落或仅是本地细菌群落的土壤中种植了Pinus Muricata植物。然后,我们介绍了土壤细菌群落,应用的代谢组学和脂质组学,以及连接的OMICS数据集,以了解ECMF的存在如何修饰地下生物地球化学,细菌群落结构及其功能潜力。我们发现,ECMF(i)的存在丰富了与自然界增强植物生长有关的土壤细菌,(ii)改变脂质和非脂质土壤代谢物的数量和组成,(iii)将植物的根化学变化为病原体抑制,酶促保存,酶促氧和反应性氧气探测。使用这种多摩变方法,我们表明这种广泛的真菌共生可能是构建土壤食物网的常见因素。
完整的作者名单:Knehr,Kevin;约瑟夫(Joseph)Argonne国家实验室,化学科学与工程部Kubal; Argonne国家实验室,化学科学与工程部Deva,Abhas;穆罕默德(Mohammed)Argonne国家实验室,化学科学与工程部Effat; Argonne国家实验室,化学科学与工程部; Assiut University,Shabbir机械动力工程系; Argonne国家实验室,化学科学与工程部
植物相关微生物群由多种但分类结构不同的群落(如细菌、真菌和古菌)组成,被认为是宿主植物的第二基因组,在不同植物物种之间存在差异(Brown 等人,2020 年)。植物与微生物之间的相互作用赋予植物宿主适应性优势,包括养分循环、促进生长、抗逆性和抗病原体性(Trivedi 等人,2020 年)。最近针对根系和根际土壤的研究表明,微生物群落的组装和结构受各种生物和非生物因素的影响,包括植物遗传和年龄、土壤类型和土壤特性(如 pH 值和营养物质)(Yu 等人,2018 年)。据报道,微生物群落的组装和网络
摘要背景:由于缺乏对生物过滤反应器中污染物去除过程和细菌群落动态的了解,因此值得研究。本综述探讨了生物过滤过程、常用的生物过滤器类型、细菌群落动态和生物过滤器中的污染物去除机制。方法:本综述使用了 Scopus、EBSCO 和 ProQuest 上发表的先前研究的数据,这些研究分为生物过滤过程、生物过滤器类型、细菌群落动态和污染物去除机制等参数。对数据进行了叙述、表格分析和综述。结果:在生物过滤反应器中,微生物覆盖介质,使污染物流过缝隙并接触生物膜层。随着生物膜变厚,粘附性减弱,从而产生新的菌落。沉床生物过滤器、滴滤器和填料塔曝气和气化系统可有效去除水生环境中的营养物质。生物过滤器细菌群落按过滤层深度分类,上层为快速生长、不太专业的群落,底层为更专业的群落。污染物的生物降解取决于多种因素,如营养物质的有效性、氧浓度、pH 值、污染物的生物利用度以及生物质的物理和化学特性。结论:生物滤池反应器利用微生物覆盖介质,使污染物流过缝隙并接触降解有机化合物的生物膜层。淹没床生物过滤器、滴滤池和填料柱曝气系统可以有效去除污染物。生物滤池细菌群落按滤层深度分类,上层为快速生长、专业化程度较低的群落,底层为专业化程度较高的群落。关键词:废水、细菌、生物膜、环境污染物、营养物质引用:Muliyadi M、Purwanto P、Sumiyati S、Hadiyanto H、Sudarno S、Budiyono B 等。生物过滤器中的细菌群落动态和污染物去除机制:文献综述。环境健康工程与管理杂志 2024; 11(4): 477-492 doi: 10.34172/EHEM.2024.47 。
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月10日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.06.636970 doi:Biorxiv Preprint
F. Vautrin,P。Piveteau,M。Cannavacciuolo,P。Barre,C。Chauvin等。土壤微生物群落对消化施用的短期反应取决于消化和土壤类型的特征。应用土壤生态学,2024,193,pp.Art。105105。10.1016/j.apsoil.2023.105105。hal- 04266661