伪exon是非功能性内含子序列,可以通过深内核序列变化激活。激活中的伪exon包含在mRNA中,并干扰了正常的基因表达。PCCA C.1285-1416A> g变化激活伪exon,并通过在PCCA和PCCB中编码的丙酰基-COA羧化酶酶的指示引起严重的代谢性毒性酸血症。我们详细介绍了这种致病性伪exon活化事件,并确定HNRNP A1对于正常代表很重要。PCCA C.1285-1416A> g变化破坏了HNRNP A1结合剪接消音器,并同时创建剪接增强器。我们证明,通过剪接切换的反义寡核苷酸阻止这种调节区域可恢复正常的剪接,并挽救患者纤维细胞中的酶活性,并在由CRISPR基因创建的细胞模型中恢复了酶活性。有趣的是,PCCA伪exon具有上调基因表达的未插入潜力,因为健康组织显示出相对较高的纳入水平。通过阻止未激活的野生型假exon的包含,我们可以同时增加PCCA和PCCB蛋白水平,从而增加了异二次运动酶的活性。令人惊讶的是,我们可以从具有PCCA错义变体的患者纤维细胞中的残留水平中吸收酶活性,而且还可以从具有PCCB错过变体的患者中进行酶活性。这是丙酸血症的潜在治疗策略。
辅酶A(COA)充当细胞内酰基的关键载体,在调节酰基转移反应并参与细胞代谢过程中起着基本作用。作为主要底物和辅助因子从事各种代谢反应,COA及其衍生物对各种生理过程产生了中心影响,主要是调节脂质和酮代谢以及蛋白质修饰。本文对COA的分子机制进行了全面综述,该机制会影响癌症的发作和进展,心血管疾病(CVD),神经退行性疾病和其他疾病。主要焦点包括以下内容。(1)在癌症中,诸如乙酰-COA合成酶2,ATP柠檬酸裂解酶和乙酰辅酶A羧化酶等酶通过调节乙酰-COA水平调节脂质合成和能量代谢。(2)在CVD中,诸如稳态 - coA脱发酶-1、3-羟基-3-羟基-3-甲基戊二核-COA(HMGC)合成酶2和HMGC还原酶的影响以及这些疾病的形成和进步是由Coa Metbolism跨多orgbolism跨越了这些疾病的形成和进步。(3)在神经退行性疾病中,COA在维持大脑中胆固醇稳态及其对此类疾病发展的影响方面的意义得到了详尽的讨论。涉及COA及其衍生物的代谢过程涵盖了细胞内的所有生理方面,在各种疾病的发作和进展中起关键作用。阐明COA在这些疾病中的作用会产生重要的见解,这些见解可以作为疾病诊断,治疗和药物开发的有价值的参考和指导。
ICD-10-CM代码描述D77在其他地方分类的疾病中血液形成器官的其他疾病D81.818其他依赖生物素依赖的羧化酶缺乏E53.8其他指定B组维生素F01.50的缺乏症由于已知的生理状况变化,由于已知的生理状况变化而引起的精神障碍,由于已知的生理状况G60.9遗传和特发性周围神经病;未指定的G63在其他地方分类的疾病中的多神经病G65.0 Thru g65.2炎症和有毒的多神经病的续集G93.3治疗后疲劳综合征K14.6 Glossodosodynia k29.30,K29.31未指定的慢性胃炎K50.00至K50.919克罗恩病K86.0酒精诱导的慢性胰腺炎K86.1其他慢性胰腺炎K86.81 Exocrine Pancreatic胰腺胰腺胰腺胰腺胰岛素不足K86.89其他指定的胰岛 K90.9 Other and unspecified intestinal malabsorption K91.1 Postgastric surgery syndromes K91.2 Postsurgical malabsorption, not elsewhere classified M34.83 Systemic sclerosis with polyneuropathy Q41.0 thru Q41.9 Congenital absence, atresia and stenosis of small intestine R20.0 thru R20.9 Disturbances of skin感觉R53.0直达R53.83不适和疲劳Z93.2回肠造口术状态Z93.4胃肠道的其他人为开放胃肠道状态的其他人为开放状态Z97.8其他指定设备的存在Z98.0肠旁路和吻合术状态Z98.3 Z98.3肺部状态Z98.62 Pastipiral Z98.62 perpastifey Z98.62 Z98.62 Z98.62 Z98.62术后状态
最近的研究强调了色氨酸代谢在阿尔茨海默氏病(AD)的发病机理中的显着参与。然而,仍然缺乏对色氨酸代谢在AD背景下的确切作用的全面研究。这项研究采用生物信息学方法来识别和验证与AD相关的潜在色氨酸代谢相关基因(TRPMG)。通过加权基因共表达网络分析(WGCNA)测试和17种已知的色氨酸代谢途径的交点促进了TRPMG的发现。随后,使用基因集变异分析(GSVA)阐明了TRPMG的推定生物学功能和途径。此外,采用最低绝对收缩和选择算子(LASSO)方法来识别枢纽基因并评估5个TRPMG在区分AD时的诊断效率。还研究了轮毂TRPMG与临床特征之间的关系。最后,使用APP/PS1小鼠对五个TRPMG进行体内验证。我们确定了与AD相关的5个TRPMG,包括丙酰辅酶A羧化酶亚基β(PCCB),TEA结构域转录因子1(TEAD1),苯基丙烷基TRNA合成酶亚基β(FARSB),Neurofascin(NFASC)(NFASC)和EZRIN(EZRIN(EZRIN)。在这些基因中,PCCB,FARSB,NFASC和TEAD1与年龄相关。在APP/PS1小鼠的海马中,我们观察到FARSB,PCCB和NFASC mRNA表达的下调。此外,在APP/PS1小鼠的脑皮质和海马中,PCCB和NFASC蛋白表达也被下调。我们的研究为未来的研究铺平了道路,旨在揭示AD中色氨酸代谢失调及其治疗意义的复杂机制。
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
Silico生物学中的摘要被认为是一种有效且适用的方法来启动各种研究,例如生物多样性分类学保护。在用于兰花物种的硅分类法中使用的系统发育分析可以提供有关遗传多样性和进化关系的数据。在分类学研究中可用于评估基因基因座特定靶标的一种特殊方法是DNA条形码。进行了这项研究,以使用MAT K,RBC L,RPO C1和NRDNA标记来确定特定的靶基因基因基因,用于使用系统发育分析在硅方法中使用Silico方法的Coelogyne属的DNA条形码。所有标记序列均从NCBI网站收集,并使用多种软件和方法进行分析,即用于样品序列对齐的Clustal X和用于系统发育树的结构和分析的Mega 11。恢复表明,建议使用的基因基因座是nrDNA基因基因座。系统发育分析表明,NRDNA基因基因座的使用能够将17种coelogyne物种与两个外群物种分开,即Cymbidium和Vanilla,然后与1,5-双磷酸羧化酶/氧合酶/氧合酶/氧合酶/氧合酶大型亚基(RBC l)一起,而其他基因群和其他polim subiN locase and n namely malsy matulase k(rbc l)(namely kita k)(namely malsy matuly k)(namy k'' RPO C1)提供了一种视觉植物树,其中两个外群物种与Coelogyne物种相同。因此,这项研究的结果可用作支持Coelogyne育种和保护计划的参考。版权所有:©2023,J。热带生物多样性生物技术(CC BY-SA 4.0)
自成立以来,它是一种雄心勃勃的全球生物识别系统[1],DNA条形码(使用标准化的基因片段作为物种识别的内部标签)已将自己确立为生物多样性科学中的重要方法,并发表了12,000多篇论文(Web of Science搜索“ DNA” DNA“ DNA”和“ Barodod*6月2021年)。Hebert和合作者的最初建议推荐了动物的线粒体细胞色素C氧化酶I(COI)标记。然而,对于植物和真菌,已经提出了其他更有效的标记物,例如Maturasek(MATK)和核糖二磷酸羧化酶大亚基(RBCL)胆固醇成形剂标记物用于流量的植物[2] [2]。已建议使用几种标记为硅藻的DNA条形码,例如,从5.8S + ITS-2 [3]到RBCL [4],但对这些分类单元的研究受到限制。对于真菌,它已被广泛接受[5];但是,它的实施也有几个问题,特别是在某些水生物种中[6],尽管它很重要,但我们发现了六篇DNA条形码水生真菌的论文。DNA条形码已被反复证明是一种生物多样性测量方法的方法,显示了与传统分类法的高度率,例如,薄荷和鸟类和鸟类[7-10] [7-10],而其作为生物差异科学的预测工具的能力也很快就变得显而易见,刺激了新的框架框架。在这里,已经观察到了一些引人注目的多样性示例[14,15],并且在众多水生生态系统中已经描述了类似的趋势。目前,DNA条形码可以加速生物多样性库存,并帮助许多国家 /地区的分类学家数量减少。很早就确认了数据共享和协作研究潜力的重要性,从而创建了生命数据系统的条形码(BOLD)[16]。序列数据可以与详细的标本元数据和照片相关联,支持痕量文件,最重要的是博物馆收藏中的保证标本[16]。
在真核细胞中,线粒体是内共生器官,与各种细胞过程有关,包括能量消耗,生物合成,信号转移和程序性细胞死亡。1显着,它们是创建三磷酸腺苷(ATP)的主要位置,腺苷三磷酸腺苷(ATP),包括所有生物的通用自由能载体,包括所有五个呼吸链络合物和所有三羧酸周期(TCA)酶。在细胞质和线粒体基质之间的代谢物交换对于执行这些代谢过程是必要的,这些代谢过程仅限于线粒体腔室并保留内部内稳态。电压依赖性阴离子通道允许微小的分子穿过外部线膜。然而,线粒体内膜(IMM)对分子和离子高度渗透,必须依靠特定的转运蛋白和通道来连接细胞质和线粒体的代谢。线粒体载体家族成员执行大部分运输步骤。2其他转运蛋白家族包括线粒体丙酮酸载体(MPC)。3 MPC是一种蛋白质复合物,存在于线粒体内膜中,并负责将丙酮酸从线粒体转运到线粒体基质中,其中丙酮酸转化为乙酰基氧乙烯酶A(乙酰辅酶A)。ace-tyl-coa进入TCA循环,并在其中进一步氧化。另外,线粒体中的丙酮酸也可以通过吡二酸酯羧化酶的羧化来参与糖异生,以产生草乙酸以补充TCA循环。7如上所述,除了被运输到线虫外,丙酮酸还可以通过细胞质中的乳酸脱氢酶(LDH)还原为乳酸。MPC是在1970年代4提出的,最初被称为BRP44L(脑蛋白44样)和BRP44(脑蛋白44)。它在2003年被鉴定在酵母中,并在2012年进一步鉴定在哺乳动物中。3,5,6 MPC是一个相对较小的杂物,由两个亚基组成,分别由12和14 kDa组成,分别为12和14 kDa。
调查的目标:这项工作旨在评估紫红酮诱导的PD的实验小鼠模型中氧化锌(ZnO)纳米颗粒的神经保护作用,并研究ZnO,钴铁素铁素体纳米颗粒及其组合的治疗作用。方法:在PD小鼠的对照和实验模型中,使用ELISA评估了多巴胺,去甲肾上腺素,肾上腺素和5-羟色胺的水平。通过实时PCR测定了DOPA-二羧化酶表达水平。通过蛋白质印迹分析评估酪氨酸羟化酶(Th)的表达水平。结果:我们的数据表明,与正常情况相比,PD小鼠的多巴胺水平降低。ZnO NP在正常小鼠和PD小鼠中增加了多巴胺水平(分别为37.5%和29.5%;与未经治疗的小鼠相比,分别为37.5%和29.5%)。但是,ZnO NP在正常小鼠或PD小鼠中不会引起去甲肾上腺素和肾上腺素水平的任何变化。5-羟色胺的水平降低了64.0%,在用钴铁氧体和双Zno-钴铁素体NPs处理的PD小鼠中,51.1%的水平降低了51.1%;与未处理的小鼠相比,分别是相比。在用ZnO NP处理的正常和PD小鼠中,DOPA-二羧酸酶的mRNA水平增加。与未处理的PD小鼠相比,使用钴铁素体NP和双ZnO-Cobalt铁氧体NP时,其水平降低。与未经处理的小鼠相比,在用ZnO,钴铁素体和双ZnO-Cobalt铁氧体NP治疗的正常小鼠中观察到了0.25、0.68和0.62倍。主要结论:这项研究表明,ZnO NP可能被用作潜在的干预措施来提高多巴胺水平以帮助PD治疗。在PD小鼠中,ZnO给药导致TH水平的0.15倍降低,而与未经处理的PD小鼠相比,Cobalt铁氧体和双重ZnO-Cobalt铁氧体NP施用分别降低了0.3和0.4倍。
摘要:目前,中国的“浓缩物”,“浓缩物 +干草”和TMR“总混合口粮”进食模式的犊牛通常尚不清楚实际生产中的三种分子调节机制。这项研究旨在探索中国荷斯坦犊牛最合适的喂养模式,以改善瘤胃发酵功能和犊牛的生长性能。在这方面,研究了瘤胃微生物与宿主代谢之间的相互作用。GF组的瘤胃体积和犊牛的重量显着高于GFF和TMR组中的瘤犊牛(P <0.05),而GF组的犊牛瘤pH值为6.47〜6.79。宏基因组学分析表明,GF和GFF犊牛的瘤胃微生物组的相对丰度较高,甲烷二磷,甲烷磷和甲诺氏菌具有较高的相对丰度(p <0.05)。prevotella多含糖果在GF犊牛的瘤胃中(p <0.05)的含量更高,这表明GF组犊牛具有更强的发酵糖的能力。值得注意的是,与TMR组相比,在丙酮酸代谢途径中,在GF犊牛中显着上调了磷酸烯醇丙酮酸羧化酶,并且丙酮酸磷酸二酮酶显着下调。代谢组学结果表明,在GF犊牛中,Ursodoxycholic的上调显着上调,并且大多数差异代谢产物都富含胆汁分泌途径。协会分析研究发现,Prevotella和Ruminococcaceae的微生物可能与宿主合作,这有助于消化和吸收脂质,并使犊牛的生长更好。这三种喂养模式具有相似的效果,但是“ GF”喂养模式对有关瘤胃形态,含量生理学和微生物的个人生长和瘤胃发展更为有益。此外,瘤胃微生物和宿主的协同作用可以更有效地水解脂质物质并促进脂质的吸收,这对犊牛的生长具有很大的意义。