通过改造与葡萄糖代谢(TCA 循环或乙醛酸循环)相关的基因,可以增强琥珀酸的产量 [8]。例如,过表达编码丙酮酸羧化酶 (pyc) 的单个基因可显著提高谷氨酸棒杆菌乳酸脱氢酶 1 敲除突变体中的琥珀酸产量 [5]。然而,与几种基因敲除突变体不同,谷氨酸棒杆菌野生型可用于在厌氧条件下生产琥珀酸 [45]。表 3 比较了不同重组谷氨酸棒杆菌菌株和其他微生物的琥珀酸产量。有趣的是,从水解产物中生产琥珀酸的产量往往远低于使用纯葡萄糖作为碳源所获得的产量,并且根据细胞干重 (CDW,细胞密度) 和发酵时间显示出广泛的产量范围。这些结果表明,碳源和
图 1 植物中脂肪酸和三酰甘油合成途径的示意图。虚线显示三酰甘油合成中脂肪酸的流动。ACC,乙酰辅酶 A 羧化酶;ACP,酰基载体蛋白;CoA,辅酶 A;DGAT,二酰甘油酰基转移酶;FAB2,脂肪酸生物合成 2;FAD2,脂肪酸去饱和酶 2;FAD3,脂肪酸去饱和酶 3;FAE1,脂肪酸延长酶 1;FATA,脂肪酰基-ACP 硫酯酶 A;FATB,脂肪酰基-ACP 硫酯酶 B;KAS,β-酮酰基-酰基载体蛋白合酶;LMAT,丙二酰辅酶 A/ACP;PC,磷脂酰胆碱; PDCT,磷脂酰胆碱:二酰甘油胆碱磷酸转移酶。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
摘要 基于 CRISPR 的定向进化是一种有效的育种生物技术,可改善植物的农艺性状。然而,使用单个单向导 RNA 其基因多样化仍然有限。我们在这里描述了一种多重正交碱基编辑器 (MoBE) 和一种随机多重 sgRNA 组装策略,以最大化基因多样化。MoBE 可以在不同的靶标上有效诱导正交 ABE (< 36.6%)、CBE (< 36.0%) 和 A&CBE (< 37.6%),而 sgRNA 组装策略将各种靶标上的碱基编辑事件随机化。对于水稻乙酰辅酶 A 羧化酶 (OsACC) 第 34 外显子的每一条链上的 130 个和 84 个靶标,我们在随机双 sgRNA 和随机三重 sgRNA 文库中观察到多达 27 294 种靶标-支架组合类型。我们进一步利用MoBE和随机双sgRNA文库对水稻中的OsACC进行了定向进化,获得了更强的除草剂抗性的单突变或连锁突变。这些策略可用于功能基因的原位定向进化,并可能加速水稻性状改良。
还使用特异性引物插入了 MglB (D236A) 中的突变。通过重叠 PCR 连接每个扩增片段,并通过热融合法亚克隆到线性化质粒中 [14]。所选载体为用于细菌表达的 pRSET B、用于哺乳动物表达的 pcDNA3 和用于植物表达的 pRI201_AN。将叶绿体定位信号、核酮糖二磷酸羧化酶小链 1A (RBCS1a) [15] 序列通过 Gly-Gly-Ser-Gly-Gly 接头融合在 LOTUS-Glc 和 LOTUS-Glc (D236A) 的 N 末端。为了共表达 miniSOG2 和 LOTUS-Glc,我们将 LOTUS-Glc 和 miniSOG2 与可自裂解的 P2A 肽连接起来 [16]。使用热休克法对大肠杆菌 (E. coli) 菌株 XL10-Gold 进行转化,并在 2 mL LB 培养基中用 0.1 mg/ml 氨苄青霉素在 37 ◦ C 下培养单个菌落过夜。通过碱性-SDS 裂解从收集的细菌沉淀中进行小规模 DNA 制备。使用 BigDye Terminator v1.1 循环测序试剂盒 (Thermo Fisher Scientific) 通过染料终止子循环测序确认质粒序列。LOTUS-Glc 及其变体的 DNA 序列显示在注释 S1 中。
模型预测与实际过程之间的差异,称为过程 - 模型不匹配18(PMM)仍然是生物过程优化的严重挑战。以前,我们提出了19个硅/电池内控制器(HISICC)概念的混合动力,将基于模型的优化与基于细胞的20反馈相结合,以解决PMM问题。在此,采用了这种方法来调节细胞内21浓度限制酶。使用工程化的22大肠杆菌菌株(FA3)证明了高级HISICC(FA3)。该菌株具有一个内部反馈控制器,23,它响应感测到该酶形成的24个丙6Lonyl-COA浓度,从而减速了乙酰辅酶A羧化酶(ACC)过表达。FA3的数学模型构建了25,并使用实验数据进行了验证。假设各种PMM的模拟显示,使用FA3的HISICC 26可以通过鲁棒制动其27的过表达来有效地减轻过度ACC的毒性,从而最大程度地减少了产量损失。这项研究证实了HISICC是提高28种生物处理效率的可行策略,尤其是在平衡瓶颈酶水平方面。29
自然界分布稀疏的树突属是最大的兰花科之一。DNA条形码可能是快速,准确鉴定树突物种的最佳选择。本研究的目的是使用DNA条形码技术来描述树突物种。在这里,我们使用了dendrobium sp的标本。从Makawanpur的Brindaban植物园(540 m ASL)收集为测试对象。我们从标本中放大并测序了三个叶绿体基因座,RBCL(Rorose-1,5-双磷酸羧化酶),MATK(成熟酶K)和PSBA-TRNH(基因间间隔)。我们从NCBI中检索了十二个质体序列,代表了六种树枝状物种(D. Candidum,D。Crepidatum,D。Chrysanthum,D。Denneanum,D。Fimbriatum和D. Moschatum)在尼泊尔报道。同样,还检索了一个质子质体的质体胶质体,以用作组外。从每个登录中提取RBCL,MATK和PSBA-TRNH的各个对齐序列。使用Mega X的最大似然方法进行进化分析。结果表明,与用单个基因座序列生成的序列相比,与所有三个基因座(RBCL,MATK和PSBA-TRNH)的组合序列产生的进化树更好。但是,需要其他标记才能提高准确性。
摘要目的:生物素酶缺乏症(BD)是一种罕见的常染色体隐性代谢疾病,会损害人体回收生物素的能力,这是涉及各种代谢过程的羧化酶酶的关键辅酶。这项研究旨在评估生物素酶缺乏症对血浆中胆碱酯酶活性的影响,假设由生物素回收不足引起的代谢破坏可能导致胆碱酯酶功能的改变。材料和方法:从分为四个遗传组的73个个体收集血浆样品:野生型(n = 12),杂合(n = 30),纯合(n = 19)和化合物杂合子(n = 12)。使用比色法测量胆碱酯酶活性。结果:研究发现,杂合基团的胆碱酯酶活性高于纯合子组(p = 0.0356)。此外,纯合子和复合杂合子的胆碱酯酶活性明显低于野生和杂合基团(p = 0.0272)。统计学上的显着变化表明生物素酶缺乏症与胆碱能活性改变之间存在关系。结论:发现表明,生物素酶缺乏症,尤其是在其严重变体中,可能会导致胆碱酯酶活性大幅降低,这导致受影响患者发现的神经系统症状。需要进行更多的研究来研究这种关联背后的过程,并制定降低BD对胆碱酯酶活性和神经健康健康的影响的策略。
代谢通量及其控制机制是细胞代谢的基础,为研究生物系统和生物技术应用提供了见解。然而,对微生物细胞工厂中生化反应的控制,尤其是在系统层面的控制,定量和预测性的理解是有限的。在这项工作中,我们提出了 ARCTICA,这是一个计算框架,它将基于约束的建模与机器学习工具相结合以应对这一挑战。使用模型蓝藻 Synechocystis sp. PCC 6803 作为底盘,我们证明 ARCTICA 可以有效模拟全球规模的代谢通量控制。主要发现包括:(i) 光合生物生产主要受卡尔文-本森-巴沙姆 (CBB) 循环中的酶控制,而不是受参与最终产物生物合成的酶控制;(ii) CBB 循环的催化能力限制了光合活性和下游途径;(iii) 核酮糖-1,5-双磷酸羧化酶/加氧酶 (RuBisCO) 是 CBB 循环中的主要限制步骤,但并非最主要的限制步骤。预测的代谢反应与之前的实验观察结果在质量上一致,验证了我们的建模方法。ARCTICA 是了解细胞生理学和预测基因组规模代谢网络中限速步骤的重要管道,从而为蓝藻生物工程提供指导。