摘要简介:耐多药细菌是指通过突变对多种抗生素产生耐药性的细菌。在医院环境中,打破这些细菌传播链的最有效方法是手部卫生。目的:描述 2023 年 1 月至 12 月马瑙斯一家热带疾病参考医院 ICU 中多重耐药菌株的生长情况。方法:这是对 Heitor Vieira Dourado 博士热带医学基金会-FMT/HVD 的 CCIH 数据库中现有的二手信息的调查。结果:2023年1月至12月,共报告60例医院相关感染(IRAS),其中32例(53.3%)为呼吸机相关性肺炎(PAVM),21例(35%)为中心导管原发性血流感染(IPCS),7例(11.7%)为留置膀胱导管相关尿路感染(ITU)。在耐药情况方面,最常见的微生物是对万古霉素和苯唑西林敏感的金黄色葡萄球菌(33.3%)、对碳青霉烯类药物耐药的产气克雷伯菌(13.7%)和对碳青霉烯类药物耐药的大肠杆菌(13.7)。在病理情况方面,ICU内发生医院感染的患者中有45.8%患有艾滋病。结论:对医院微生物学特征的分析,以及以及微生物的耐药性特征,是预防和对抗医源性感染 (HAI) 的极其有用的工具。关键词:感染学。流行病学。交叉感染。不良事件
全基因组CRISPR/Cas9筛选是一种在特定条件下定位位点的简便筛选方法,已被用于肿瘤耐药研究中寻找潜在的耐药相关基因,对进一步治疗获得性耐药的恶性肿瘤具有重要意义。近年来,涉及全基因组CRISPR/Cas9筛选的研究逐渐增多。本文综述了近年来全基因组CRISPR/Cas9筛选在药物耐药中的应用,涉及丝裂原活化蛋白激酶(MAPK)通路抑制剂、聚(ADP-核糖)聚合酶抑制剂(PARPi)、烷化剂、有丝分裂抑制剂、抗代谢物、免疫检查点抑制剂(ICI)和细胞周期蛋白依赖性蛋白激酶抑制剂(CDKI)。总结了KEAP1/Nrf2通路、MAPK通路、NF-κB通路等耐药通路,并分析了全基因组CRISPR/Cas9筛选技术的应用限制和条件。
2022 年 8 月 9 日——抗生素对抗细菌(细菌和 h.Jngi)_但是。细菌反击并找到新的生存方式。他们的防御策略称为抵抗机制。
使用 CRISPR-Cas9 基因编辑技术将关键突变引入疾病相关细胞系。这些新型细胞系克服了使用传统渐进式药物选择方法开发的耐药癌症模型的几个缺点。这些缺点包括细胞系异质性、相关基因型的不稳定性、需要持续的药物压力来维持细胞系,以及缺乏对新开发的疗法的获得性耐药模型。获得性耐药的一个显著例子是黑色素瘤患者对 BRAF 抑制剂治疗产生耐药性。ATCC 科学家使用 CRISPR-Cas9 基因编辑技术将与获得性 BRAF 抑制剂耐药性相关的特定点突变直接引入
微生物的多重耐药性:综述 1 Wartu JR、*1 Butt AQ、1 Suleiman U.、1 Adeke M.、1 Tayaza FB、2 .Musa BJ 和 3 Baba, J. 1 尼日利亚卡杜纳州立大学微生物学系科学学院 2 尼日利亚博尔诺州迈杜古里 WHO 国家/ITD 实验室 UMTH 3 尼日利亚拉派伊易卜拉欣巴班吉达大学微生物学系 通讯作者的电子邮件地址:afia.butt8@gmail.com 电话:+2348130010675 摘要 多重耐药性 (MDR) 是指某些微生物能够抵抗多种抗菌剂的作用。MDR 包括对多种抗菌、抗真菌、抗病毒和抗寄生虫药物具有耐药性的微生物。某些微生物对某些通常会杀死它们或限制其生长的化学物质(药物)表现出类似的活性,这种现象称为抗生素耐药性(AMR)。多重耐药性可分为原发性耐药性、继发性耐药性、内在耐药性、广泛耐药性和临床耐药性。产生耐药性的抗生素包括β-内酰胺类、糖肽类、氨基糖苷类、磺胺类、头孢菌素类等。抗菌药物的作用方式包括细胞壁合成抑制剂、蛋白质合成抑制剂、关键代谢途径阻断剂、核酸合成抑制剂等。细菌经常产生耐药性,这可能是通过多种生化机制之一实现的,例如突变、破坏或失活以及细菌之间通过结合、转化和转导等多种方式进行的物质外排或遗传转移。 MDR原虫的作用方式是通过减少药物吸收、通过P-糖蛋白和其他运输ATP酶从寄生虫中输出药物等实现的。MDR蠕虫的作用方式是通过药物靶点的基因变化、药物运输的变化、药物代谢等实现的。抗病毒药物的作用方式通常靶向具有逆转录酶活性的病毒DNA聚合酶来抑制病毒复制。MDR真菌的作用方式是它们学会了修改抗真菌药物靶点或最常见的是增加进入药物的流出量。有多种方法可以逆转这种耐药性,例如在看完每个病人后洗手,公众应彻底清洗生水果和蔬菜以清除耐药细菌和可能的抗生素残留,避免滥用抗生素等。关键词:微生物,多重耐药性(MDR)引言多重耐药性(MDR)是某些微生物对多种抗菌药物表现出的耐药性。MDR微生物对公众健康的威胁最大,因为它们对多种抗生素有耐药性。其他 MDR 包括对多种抗真菌、抗病毒和抗寄生虫药物具有耐药性的药物(Magiorakos,2014 年;WHO,2018 年)。多种生化和生理机制都可能是耐药性的罪魁祸首(Liu 和 Pop,2009 年;WHO,2014 年)。在抗菌剂的具体情况下,导致耐药性出现和传播的过程的复杂性不容小觑,而缺乏这些主题的基本知识是主要原因之一
1. 微生物学和抗菌素耐药性 a. 定义和范围:抗菌素耐药性 (AMR) 可定义为微生物对抗菌剂或以前具有治疗作用的药物产生耐药性。最常讨论的方面是细菌的抗生素耐药性,但 AMR 包括所有微生物。对抗病毒药物的耐药性也是一个日益严重的问题,尤其是需要终生治疗的病毒感染(如 HIV)。AMR 通常源于治疗最初针对的病原微生物中发生突变、转移或遗传的基因。其他生理微生物状态,如耐受性和持久性,也会导致 AMR 的发展。我们缺乏对这些机制如何导致 AMR 的了解,这使治疗变得复杂。开发新的有效治疗方法、技术和药物需要对生物学、生理学和微生物的防御机制有基本的了解。此外,它还涉及全面了解治疗发展的各个方面。因此,与临床实践、临床研究、临床前研究和公共卫生密切相关的微生物学专业知识对于寻找新的抗菌剂和策略至关重要。与药物化学家和制药技术合作对于开发新的治疗方案是必不可少的。b. 社会意义:抗菌药物耐药性的出现是一个重大的全球社会问题,由于缺乏有效的治疗措施,对现代医学构成了极其严重和现实的威胁。在潜在的后抗生素时代,抗生素不再起作用,即使是轻微的感染也可能再次导致死亡。我们可能会发现自己处于这样一种境地:由于随后感染多重耐药和泛耐药微生物的风险,必须更频繁地避免手术。据估计,2019 年全球约有 127 万人死于细菌性抗菌药物耐药性。在挪威,手术后感染的可能性已经成为一个风险评估因素。因此,抗菌药物耐药性研究被认为对社会非常重要,预计将引起公众和行业利益相关者的极大兴趣。c.融合和世界领先研究环境的潜力:在生命科学大楼 (LVB),药学系的药物微生物学和免疫学与临床医学研究所的微生物学系、生物科学系的感染生物学以及牙科学院口腔生物学研究所的微生物组和抗生素耐药性研究小组一起迁入。LVB 的共置为加强奥斯陆大学 (UiO) 和奥斯陆大学医院 (OUS) 的感染生物学/AMR 环境之间的合作提供了独特的机会。研究和临床诊断的整合还将促进基础研究、转化研究和临床实践的融合,从而为抗菌药物耐药性领域的潜在创新铺平道路。药学系和化学系的药物化学家和制药技术人员的参与为开发新活性物质、新治疗方案提供了合作机会
摘要:败血症和败血性休克在重症患者中很常见,并且按照幸存的败血症运动(SSC)的建议,早期的经验性抗菌疗法(在第一个小时内都特别是至关重要的,对于成功管理这些疾病至关重要。要有效,还必须适当地给药:药物应涵盖最可能的病原体并在感染部位达到有效浓度。但是,由于这些患者的临床状况迅速并随着时间的推移会改善或恶化,因此危重患者的药代动力学经常发生变化,并不断改变。,在重症监护病房(ICU)中,优化抗菌药物给药至关重要。这本微生物的特刊研究了在患有MDR感染的重症患者中采用的流行病学,诊断创新和策略。
HIVDR损害了抗逆转录病毒药物的有效性,导致HIV相关的发病率和死亡率增加。 与HIVDR战斗,访问和遵守最佳艺术至关重要。 病毒负荷测试有助于监测治疗成功,HIV耐药性测试有助于优化ARV药物方案。 HIV人口级(公共卫生)监视计划,该计划收集有关不同人群的HIVDR的信息,是支持联合国目标的关键措施,目的是在2030年结束艾滋病流行。HIVDR损害了抗逆转录病毒药物的有效性,导致HIV相关的发病率和死亡率增加。与HIVDR战斗,访问和遵守最佳艺术至关重要。病毒负荷测试有助于监测治疗成功,HIV耐药性测试有助于优化ARV药物方案。HIV人口级(公共卫生)监视计划,该计划收集有关不同人群的HIVDR的信息,是支持联合国目标的关键措施,目的是在2030年结束艾滋病流行。
