这项研究深深地集中在开发新型CTS/GO/ZnO复合材料中,作为CO 2吸附过程的有效吸附剂。为此,根据RSM-BBD技术进行了实验设计(DOE),并且根据DOE运行,将各种CTS/GO/ZnO样品与不同的GO负载合成(在0 wt%至20 wt%的范围内)和不同的ZnO nanoparticle负载(在0 wt%范围内)(在0 wt%至20 wt%中)。使用容积吸附设置来研究温度(25-65°C范围)和对获得的样品CO 2摄取能力的压力(在1-9 bar的范围内)的影响。基于RSM-BBD方法开发了二次模型,以预测设计空间内复合样品的吸附能力。此外,还进行了CO 2吸附过程优化,并在23.8 wt%,18.2 wt%,30.1°C和8.6 bar中获得GO,ZnO,温度和压力的最佳值,其最高CO 2摄取容量为470.43 mg/g。此外,进行了CO 2吸收过程的等温线和动力学建模,并分别作为最合适的等温线和动力学模型获得了Freundlich模型(R 2 = 0.99),并获得了分数阶模型(R 2 = 0.99)。Also, thermodynamic analysis of the adsorption was done and the ∆H°, ∆S°, and ∆G° values were obtained around − 19.121 kJ/mol, − 0.032 kJ/mol K, and − 9.608 kJ/mol, respectively, indicating exothermic, spontaneously, and physically adsorption of the CO 2 molecules on the CTS/GO/ZnO复合材料的表面。最后,进行了一项可再生性研究,在十个周期后获得了CO 2吸附效率约为4.35%的较小损失,证明所得吸附剂对工业CO 2捕获目的具有良好的性能和稳健性。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月6日发布。 https://doi.org/10.1101/2024.02.05.578914 doi:Biorxiv Preprint
引用:Bakare KM,Nkeiruka AM,Matthew Uo,Ebong GN,Oyekunle D等。(2024)免疫疗法对人体的影响:基于聚糖工程抗体的癌症治疗。J Comm Med and Pub
Benjamin B. Johnson, 1 Marie-Victoire Cosson, 2,3,9 Lorenza I. Tsansizi, 2,3,9 Terri L. Holmes, 1 Tegan Gilmore, 2 Katherine Hampton, 1 Ok-Ryul Song, 2,4 Nguyen TN Vo, 5 Aishah Nasir, 5 Alzbeta Chabronova, 6 Chris Denning, 5 Mandy J. Peffers, 6 Catherine LR Merry, 5,7 John Whitelock, 5,8 Linda Troeberg, 1 Stuart A. Rushworth, 1 Andreia S. Bernardo, 2,3, * 和 James GW Smith 1,10, * 1 诺维奇医学院代谢健康中心,东英吉利大学,诺维奇研究园,诺维奇 NR4 7UQ,英国 2 弗朗西斯·克里克研究所,伦敦 NW1 1AT,英国 3 NHLI,伦敦帝国理工学院,伦敦,英国 4 高通量筛选科学技术平台,弗朗西斯克里克研究所,伦敦 NW1 1AT,英国 5 医学院,再生和建模组织,生物发现研究所,诺丁汉大学公园分校,诺丁汉 NG7 2RD,英国 6 生命历程和医学科学研究所,威廉亨利邓肯大厦,西德比街 6 号,利物浦 L7 8TX,英国 7 医学生物化学和微生物学系,乌普萨拉大学,瑞典乌普萨拉 8 新南威尔士大学生物医学工程研究生院,悉尼,新南威尔士州 2052,澳大利亚 9 这些作者贡献相同 10 主要联系人 * 通信地址:a.bernardo@imperial.ac.uk (ASB),jgsmith@uea.ac.uk (JGWS) https://doi.org/10.1016/j.celrep.2023.113668
在称为受过训练的免疫的过程中,通过β-葡聚糖对先天免疫细胞进行抽象的表观遗传重编程,从而增强了宿主对继发感染的反应。β-葡聚糖是植物,藻类,真菌和细菌的结构成分,因此被人类巨噬细胞识别为非自我。我们从Alcaligenes faecalis中选择了从酿酒酵母分散的β-葡聚糖Curdlan,WGP和efternaria的富含β-葡聚糖培养的上网和β-葡聚糖的培养物和投资是否能够产生训练有素的免疫性效应,从而导致毒物较高的Mycobactium tlyberissis的对照。我们观察到了用curdlan和替代IA训练的巨噬细胞中结核分枝杆菌生长的显着性生长,这也与IL-6和IL-1β释放的增加有关。WGP可分散训练的巨噬细胞分层为“无反应者”和“反应者”,根据他们控制结核分枝杆菌的能力,“反应者”产生较高的IL-6水平。向感染的巨噬细胞培养中添加中性粒细胞进一步增强了对结核分枝杆菌的宏观控制,但在刺激中却没有
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
摘要简介:远程缺血条件上调会响应缺血 - 再灌注损伤,内源性保护途径。这项研究检验了以下假说:肢体远程缺血性(RIPERC)通过肾素 - 血管紧张素系统(RAS)/可诱导的一氧化物氧化物合酶(INOS)/ apelin途径发挥心脏保护作用。再灌注;假手术大鼠用作对照。RIPERC是由四个周期(5分钟)的肢体缺血再灌注以及双侧肾脏缺血引起的。通过肾脏(BUN和肌酐)和心脏(肌钙蛋白I和乳酸脱氢酶)损伤生物标志物评估功能性障碍。结果:肾脏I/R损伤增加了RIPERC组减少的肾脏和心脏损伤生物标志物。肾脏和心脏的组织病理学发现也暗示了改善损伤引起的RIPERC组的变化。心脏电生理学的评估表明,RIPERC可以改善P波持续时间的下降,而不会显着影响其他心脏电生理学变化。此外,肾脏I/R损伤增加了血浆(322.40±34.01 IU/L),肾脏(8.27±1.10 mIU/mg的蛋白质)和心脏(68.28±10.28±10.28 miU/mg蛋白质/毫克蛋白质)蛋白质 - 蛋白质)血管素 - 转换剂量(ACE)的升高和培训均与升高相关性。 (25.47±2.01&16.62±3.05μmol/L)和硝酸盐(15.47±1.33&5.01±0.96μmol/L)级别;这些变化被RIPERC逆转。此外,肾脏缺血 - 再灌注损伤显着(P = 0.047)降低了肾脏(但不是心脏)Apelin mRNA的表达,而肾脏和心脏ACE2(P <0.05)和INOS(p = 0.043)mRNA表达显着增加了。这些作用在很大程度上被RIPERC逆转。结论:我们的结果表明,RIPERC可以保护心脏免受肾脏缺血 - 再灌注损伤,这可能是通过Apelin与RAS/Inos途径的相互作用。
一般特征壳聚糖是一种化合物,可与葡萄酒中的微生物高度选择性相互作用,优化其降水并显着抑制其发育。主要好处: - 微生物的选择性沉淀:壳聚糖有选择地作用于葡萄酒中存在的微生物,从而促进了它们的降水。此过程有助于减少微生物负载并防止不必要的改变。- 预防和校正非燃料:该化合物可有效预防和纠正由微生物变化引起的非风味。其动作既可以用作酿酒期间的预防措施,又可以用作装瓶后遇到的问题的补救措施。- 清洁度和过滤性的改善:壳聚糖有助于提高葡萄酒清洁度和过滤性。这对于获得无悬浮颗粒的透明葡萄酒尤其重要。从纯曲霉获得的组成壳聚糖。剂量5-15 g/hl。根据葡萄酒的清洁度,污染微生物的种类和治疗持续时间来改变剂量。建议进行初步实验室测试以确定要使用的剂量。如何在水中溶解壳聚糖1:20,小心搅拌以避免肿块形成。均匀的解决方案,将葡萄酒质量通过在室内抽水来处理,使产品搅拌至少30分钟。在治疗后6至8天后,提供了处理过的葡萄酒的倒倒和/或过滤。包装和存放0.5公斤袋和20公斤袋。快速使用。将产品存储在凉爽,干燥和通风的地方。在部分使用的情况下,在指定条件下存储之前紧密关闭。湿气产物。
摘要:近几十年来,纳米制剂作为药物输送技术的应用越来越广泛。作为治疗方法,口服给药是最常见的给药方式,但由于吞咽困难、胃肠不适、溶解度低和吸收不良等问题,口服给药并非总是最有效的途径。药物发挥治疗效果所必须克服的最重要障碍之一是第一次肝脏转运的影响。研究表明,使用由可生物降解的天然聚合物组成的纳米颗粒的控释系统可显著改善口服给药,这就是这些材料受到广泛关注的原因。壳聚糖在制药和医疗保健行业具有多种特性和功能。药物封装和体内运输是其两个最重要的特性。此外,壳聚糖可以通过促进药物与靶细胞的相互作用来增强药物功效。根据其物理化学性质,壳聚糖可以合成纳米粒子,本综述总结了口服壳聚糖纳米粒子干预的最新进展和应用。