。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年1月4日。 https://doi.org/10.1101/2024.01.03.574123 doi:Biorxiv Preprint
细胞在敌对或营养不足的环境中生存的主要挑战之一,例如肿瘤微环境,是由代谢失衡或快速增殖引起的活性氧(ROS)缓冲活性氧(ROS)。过多的ROS的细胞需要产生保护性分子,例如谷胱甘肽,以减轻破坏性作用。谷胱甘肽的产生需要半胱氨酸,通常通过SLC7A11胱氨酸 - 谷氨酸抗虫剂从细胞外环境中吸收氧化二聚体形式,胱氨酸。如果胱氨酸的摄取被阻断,细胞会经历铁毒性,这是由磷脂过氧化引起的铁依赖性死亡,尤其是多不饱和脂肪酸(PUFA),导致质膜膜中的广泛异常。铁凋亡通过白介素释放(IL-1和IL-18)激活免疫系统,并与炎症性疾病和伤害有关(1次审查1)。为了避免铁铁作用,许多癌症上调了SLC7A11,并进口大量胱氨酸以进行有效的谷胱甘肽生产。然而,这还需要准备好通过五磷酸五磷酸途径生产NADPH的葡萄糖,以便可以减少胱氨酸以降低用于谷胱甘肽生物合成(图1)。
1开发,老化和再生计划,遗传疾病与衰老研究中心,桑福德·伯纳姆·普雷比斯医学发现研究所,美国圣地亚哥; 2美国圣地亚哥医学院桑福德再生医学联盟生物工程系; 3美国罗切斯特梅奥诊所的心血管遗传学研究实验室; 4美国罗切斯特梅奥诊所定量健康科学系计算生物学系; 5美国圣地亚哥的拉迪医院MC 5004儿科医学院儿科医学院; 6美国罗切斯特市梅奥诊所分子和药理学系儿科和青少年医学系儿科心脏病学再生医学中心,分子与药理学系和实验治疗师; 7儿科和青少年医学系心血管医学系,心血管遗传学研究实验室,美国罗切斯特梅奥诊所
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月15日。; https://doi.org/10.1101/2023.07.14.549076 doi:biorxiv Preprint
5药物和生物化学系,德国图宾根大学的药物基因组学与药物研究中心,德国Tübingen * *通讯作者的关键字多尺度熵,神经发育,eeg,eeg,eeg,fnirs摘要,自然界的生物学系统,例如人类大脑,包括复杂的动力学和非网络动力学。 量化信号复杂性的一种方法是多尺度熵(MSE),它适用于在不同时间尺度下具有远距离相关的结构。 在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。 在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。 为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。 结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。 此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。 最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。 突出显示生物系统显示复杂和非线性动力学。 使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。5药物和生物化学系,德国图宾根大学的药物基因组学与药物研究中心,德国Tübingen * *通讯作者的关键字多尺度熵,神经发育,eeg,eeg,eeg,fnirs摘要,自然界的生物学系统,例如人类大脑,包括复杂的动力学和非网络动力学。量化信号复杂性的一种方法是多尺度熵(MSE),它适用于在不同时间尺度下具有远距离相关的结构。在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。 在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。 为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。 结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。 此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。 最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。 突出显示生物系统显示复杂和非线性动力学。 使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。在发育神经科学中,MSE可以作为大脑成熟的指数,并可以区分健康和病理发展。在我们目前的工作中,我们根据30个同时发生的EEG - 妊娠27至34周的胎龄(WGA)探索了MSE的发育趋势。为了探索影响MSE的潜在因素,我们确定了MSE与EEG功率谱密度(PSD)与自发活性瞬变(SATS)之间的关系。结果,通过WGA,在脑电图上计算出的MSE增加,因此反映了脑网络中的成熟过程,而在FNIRS中,MSE降低,这可能表明脑血液供应的成熟。此外,我们建议Beta频段(13-30 Hz)中的EEG功率可能是EEG中MSE的主要贡献者。最后,我们强调了SATS确定MSE的重要性,该MSE是从FNIRS记录中计算得出的。突出显示生物系统显示复杂和非线性动力学。使用多尺度熵(MSE),我们研究了早产婴儿的同时脑电图。EEG中 MSE在胎龄增加,FNIRS中的MSE降低。 eeg功率谱密度和自发活性瞬变有助于MSE。MSE在胎龄增加,FNIRS中的MSE降低。eeg功率谱密度和自发活性瞬变有助于MSE。
作者 C Beta · 2023 年 · 被引用 28 次 — 其次,我们可以区分机械化学模型,其中肌动蛋白聚合产生的机械力是波的组成部分......
收到2023年5月19日; 2023年6月20日接受;于2023年7月7日出版了作者分支:1分子微生物学系,约翰·英恩斯中心,诺里奇,诺里奇研究园,NR4 7UH,英国; 2部门生物化学和代谢,蛋白质组学设施,约翰·英恩斯中心,诺里奇,诺里奇研究园,NR4 7UH,英国。*信函:巴里·威尔金森(Barrie Wilkinson),巴里(Barrie)。 Matthew I. Hutchings,Matt。Hutchings@jic。Ac。UKUK关键词:链霉菌;抗生素; actinorhodin;分泌压力;两个组件系统;蛋白质分泌;蛋白质组学。缩写:BGC,生物合成基因簇; DH2O,去离子水; DNA,Difco营养琼脂; DNAD,Difco营养琼脂,补充了D-葡萄糖; NEB,新英格兰Biolabs; QRT-PCR,定量逆转录聚合酶链反应; RR,响应调节器; Sccutrs,S。CoelicolorCutrs; SEC,综合分泌途径; Sgrna,合成指南RNA; SK,传感器组氨酸激酶; Svcutrs,委内瑞拉·卡特斯; TCS,两个组件系统; TMT,串联质量标记; VKOR,维生素K环氧还原酶。芯片SEQ数据登录号= GSE225370(GEO)。TMT蛋白质组学登录号= PXD040579(Pride)。†这些作者对这项工作也同样贡献了本文的在线版本提供补充表。001358©2023作者
摘要越来越多地赞赏,核的结构成分通过改变染色质组织来调节基因可及性。虽然核膜连接器蛋白将机械敏感性肌动蛋白细胞骨架与核骨架联系起来,但肌动蛋白对核内部结构的贡献仍然神秘。控制肌动蛋白转运到细胞核中,加上控制肌动蛋白结构(肌动蛋白工具盒)的蛋白质的存在,这表明核肌动蛋白可以支持基因表达的生物力学调节。细胞肌动蛋白结构是机械响应性的:通过在质膜传播力在细胞核中传播的力产生的肌动蛋白电缆。我们认为,对这种生物力学提示的响应动态肌动蛋白重塑为表观遗传景观提供了新的结构控制水平。我们在这里提出要对机械力可以促进肌动蛋白转移到细胞核和控制结构排列的事实中,如间充质干细胞中所示,从而调节谱系承诺。
摘要 细胞骨架的完整性对于吞噬作用和细胞内运输等多种细胞过程至关重要。肌动蛋白细胞骨架的组织和动态破坏会导致与年龄相关的症状和疾病,从癌症到神经退化。此外,肌动蛋白细胞骨架完整性的变化不仅会破坏体细胞和干细胞的功能,还会破坏配子的功能,导致胚胎发育异常。因此,保持细胞骨架完整性和动态的策略可能对与年龄相关的疾病有治疗作用。本文的目的是重新审视目前对肌动蛋白细胞骨架在衰老中所起的作用的理解,并回顾基础研究向干预发展转变的机遇和挑战。希望通过掌握肌动蛋白动态随年龄变化的证据,为未来的研究提供关于抗衰老医学的见解。
抽象的遗传性经性淀粉样蛋白病(ATTRV)是一种严重的成人常染色体显性遗传遗传性全身性疾病,主要影响周围和自主神经系统,心脏,肾脏和眼睛。ATTRV是由经腹蛋白(TTR)基因的突变引起的,导致包括周围神经系统在内的多个器官中淀粉样蛋白原纤维的细胞外沉积。通常,与ATTRV相关的神经病变的特征是迅速进行性和致残的感觉运动轴突神经病,并早期纤维介入。腕管综合征和心脏功能障碍经常作为ATTRV表型的一部分共存。尽管神经病学家中对Attv多神经病的认识有所提高,但误诊的率仍然很高,导致诊断的重大延迟和应计性残疾。及时诊断很重要。ttr蛋白稳定剂差异和tafamidis可以延迟疾病的进展。此外,TTR基因沉默药物,patisiran和Inotersen导致TTR产生降低了80%,导致周围神经病和心脏功能障碍的稳定或略有改善,以及生活质量和功能的改善。相当大的治疗进展提出了其他挑战,包括优化ATTRV神经病中的诊断技术和管理方法。本评论重点介绍了诊断技术,当前和新兴管理策略以及ATRV疾病进展的生物标志物发展的关键进展。