树突棘中肌动蛋白细胞骨架动力学的调节对于学习和记忆形成至关重要。因此,肌动蛋白细胞骨架通路缺陷是多种脑部疾病(包括阿尔茨海默病)的生物学特征。本文,我们描述了一种由环化酶相关蛋白 2 控制的新型突触机制,该蛋白是结构可塑性现象所必需的,在阿尔茨海默病中完全被破坏。我们报告称,通过其 Cys 32 形成环化酶相关蛋白 2 二聚体对于环化酶相关蛋白 2 与辅酶蛋白结合以及肌动蛋白周转非常重要。Cys 32 依赖性环化酶相关蛋白 2 同源二聚化和与辅酶蛋白的结合由长期增强作用触发,并且是长期增强诱导的辅酶蛋白易位到棘突、棘突重塑和突触传递增强所必需的。这种机制在阿尔茨海默病患者和 APP/PS1 小鼠的海马中特别受到影响,但在额上回中没有受到影响,其中环化酶相关蛋白 2 下调,环化酶相关蛋白 2 二聚体突触水平降低。值得注意的是,阿尔茨海默病患者的脑脊液中环化酶相关蛋白 2 水平显著升高,但在额颞叶痴呆患者中没有升高。在阿尔茨海默病海马中,cofilin 与环化酶相关蛋白 2 二聚体/单体的关联发生改变,并且 cofilin 在脊柱中异常定位。总之,这些结果为阿尔茨海默病中存在缺陷的结构可塑性机制提供了新的见解。
图 1:A:NK358 pat-3::GFP 动物的肌肉细胞。虚线代表致密体(箭头),直线代表 M 线(箭头);B:pat-3::GFP; unc-52(kq748) 动物的肌肉细胞。虚线代表致密体(箭头),直线(箭头)代表 M 线。定位看起来与图 1A 相似;C:N2 肌肉细胞的罗丹明偶联鬼笔环肽染色。沿肌肉长度的肌动蛋白细胞骨架被染色(箭头);D:unc-52(kq748) 肌肉细胞的罗丹明偶联鬼笔环肽染色。细(肌动蛋白)丝(箭头)中没有明显异常。比例尺 = 10 µm。; E:unc-52 (kq748)(平均每秒 1.4454 次冲击,n=50)、unc-52(kq745)(平均每秒 1.339 次冲击,n=50)和 N2 野生型(平均每秒 1.99 次冲击,n=50)的冲击试验结果。 * 与 N2 野生型相比,p 值 < 0.05。
这项研究研究了血清催乳素(PRL)是否是儿童非酒精性脂肪肝病(NAFLD)的关键因素。总共有691个肥胖儿童参加了这项研究,并根据肝超声结果分为NAFLD组(n = 366)和简单的肥胖(SOB)组(n = 325)。两组的性别,年龄,青春期开采和体重指数(BMI)匹配。所有患者均接受了OGTT测试,并收集了禁食的血液样本以测量催乳素。进行了逐步逻辑回归,以识别NAFLD的重要预测指标。NAFLD受试者的血清催乳素水平明显低于SOB受试者[82.4(56.36,118.70)vs. 99.78(63.89,153.82),p <0.001](MIU/L)。NAFLD与胰岛素抵抗(HOMA-IR)和催乳素密切相关,proP肌动蛋白水平较低,在整个催乳素浓度越过后,pro肌动蛋白的含量较低(调整后的ORS = 1.741; 95%CI:1.059–2.860)。低血清催乳素水平与NAFLD的存在有关;因此,增加的催乳素可能是儿童肥胖症的补偿性反应。
肥厚性心肌病 (HCM) 是一种遗传性肌节疾病,会导致心脏收缩过度。一流的心脏肌球蛋白抑制剂 mavacamten 可改善阻塞性 HCM 的症状。我们在此介绍一种选择性小分子心脏肌球蛋白抑制剂阿菲卡汀,它通过显著减缓磷酸盐释放来降低 ATPase 活性,从而稳定弱肌动蛋白结合状态。阿菲卡汀与肌球蛋白催化域上的变构位点结合,不同于 mavacamten,可防止进入强肌动蛋白结合力产生状态所需的构象变化。通过这样做,阿菲卡汀减少了驱动肌节缩短的功能性肌球蛋白头部的数量。在前动力冲刺状态下与心脏肌球蛋白结合的阿菲卡汀的晶体结构为理解其对平滑肌和快速骨骼肌的选择性提供了基础。此外,在心肌细胞和携带肥大性 R403Q 心肌肌球蛋白突变的小鼠中,阿菲卡汀可降低心脏收缩力。我们的研究结果表明,阿菲卡汀有望成为 HCM 的治疗方法。
相关性溶血磷脂酸 (LPA) 受体 (PubMed:9070858, PubMed:19306925, PubMed:25025571, PubMed:26091040)。在肌动蛋白细胞骨架重组、细胞迁移、分化和增殖中发挥作用,从而有助于对组织损伤和感染因子的反应。通过异源 G 蛋白的 G(i)/G(o)、G(12)/G(13) 和 G(q) 家族激活下游信号级联。信号抑制腺苷酸环化酶活性并降低细胞 cAMP 水平 (PubMed:26091040)。信号传导触发细胞质 Ca(2+) 水平的增加 (PubMed:19656035, PubMed:19733258, PubMed:26091040)。激活 RALA;这导致磷脂酶 C (PLC) 的激活和肌醇 1,4,5-三磷酸的形成 (PubMed:19306925)。信号传导介导下游 MAP 激酶的激活 (通过相似性)。有助于调节细胞形状。促进神经元细胞中肌动蛋白细胞骨架的 Rho 依赖性重组和神经突回缩 (PubMed:26091040)。促进 Rho 的激活和肌动蛋白应力纤维的形成 (PubMed:26091040)。通过激活 RAC1 促进迁移细胞前缘板状伪足的形成(通过相似性)。通过其作为溶血磷脂酸受体的功能,在趋化性和细胞迁移中发挥作用,包括对损伤和创伤的反应(PubMed:18066075,PubMed:19656035,PubMed:19733258)。通过与 CD14 相互作用,在引发对细菌脂多糖 (LPS) 的炎症反应中发挥作用。促进对溶血磷脂酸的细胞增殖。正常骨骼发育所必需的。可能在成骨细胞分化中发挥作用。正常大脑发育所必需的。成人齿状回中新形成的神经元正常增殖、存活和成熟所必需的。在疼痛感知和神经性疼痛的引发中发挥作用(通过相似性)。
(蓝色)。CD31阳性细胞在条形图(比例尺bar¼50m m)(n¼12)中进行定量。*** P <0.001 vs cre。(b)用-smooth肌肉肌动蛋白(SMA)(绿色),肌钙蛋白I(红色)和DAPI(蓝色)和SMA阳性细胞的定量(刻度BAR¼50m m)(n¼25)的定量(n¼25)。(c)定量
基底样乳腺癌是最具侵略性的癌症之一,仍然没有有效的靶向治疗方法。为了鉴定新的治疗靶标,我们在八个乳腺癌细胞系上进行了mRNA-SEQ。在基础样肿瘤中过表达的基因中,我们专注于RhoA和RhoB基因,该基因编码已知在肌动蛋白细胞骨架中起作用的小GTPases,从而允许细胞迁移。QRT-PCR和Western印迹用于表达研究。通过伤口愈合和Boyden Chambers分析分析了迁移和侵入性特性。通过荧光肌动蛋白标记评估应力纤维的形成。Rho siRNA,小型抑制剂Rhosin处理和BRCA1转染以研究RHO和BRCA1蛋白的作用。我们表明,RhoA的强烈表达和RHOB的低表达与乳腺癌的基础样亚型有关。降低RhoA表达可降低基底样细胞系的迁移和侵袭能力,同时降低RHOB表达增加了这些能力。Rhosin是RhoA的抑制剂,也可以减少基底样细胞系的迁移。RHO蛋白参与了应激纤维的形成,这是迁移细胞中发现的肌动蛋白细胞骨架的构象:RhoA表达的抑制降低了这些纤维的形成。这些结果表明,Rho蛋白是基底样和BRCA1突变乳腺癌的潜在治疗靶标,因为迁移和获得间充质特性是这些具有高转移性潜力的肿瘤的关键功能途径。brca1是一种基础样肿瘤中经常失活的基因,似乎在这些肿瘤中RhoA和RhoB的差异表达中起作用,因为在BRCA1突变的基底样细胞系中BRCA1表达的恢复RhoA的表达降低了RhoA的表达和RHOB的表达,并增加了迁移能力的表达。
•内皮:与内皮有关:中皮上皮的上皮由单层薄的扁平细胞组成,该细胞是内部身体腔和血管腔的线条。•粘附连接:上皮组织中细胞 - 细胞连接处发生的蛋白质复合物,通常比紧密连接更基础。一个粘附连接定义为细胞连接,其细胞质面部与肌动蛋白细胞骨架有关。它们可以作为包围细胞(Zonula粘附剂)的频带或作为细胞外基质附着的斑点(粘附斑块)的斑点。(Wikipedia)
人类遗传学是加速目标选择并增加药物开发成功的可能性的强大工具。对疾病的遗传基础的越来越多的理解提供了识别可能针对潜在分子病理和发展疾病修饰疗法的靶标。在这里,我们开发了一个工作流程,以测试来自高吞吐量筛选(HTS)中人类遗传学的感兴趣基因(GOI)。使用有关心脏结构,功能和疾病风险的公开可用的人遗传数据,我们优先考虑100多个心肌病疾病的靶标。siRNA和AAV-ORF文库,以促进人类诱导的多能干细胞衍生的心肌细胞(HIPSC-CMS)和心脏成纤维细胞(CF)中这些基因的敲低或过表达。开发了两个定制的MATLAB HTS图像处理脚本,称为“ tamarack”和“豪猪”,用于量化HIPSC-CM肉瘤形态和CF激活,分别使用小波转换来检测亚细胞结构。tamarack可以量化肌节计数,长度和方向。豪猪能够定量成纤维细胞激活指标,包括α-平滑肌肌动蛋白,应力纤维计数,长度,方向,核α-SMA重叠和F-肌动蛋白α-SMA重叠。我们确定了CM和CF屏幕的最高命中,以进行进一步的分析。