普通语言摘要巨噬细胞是源自血液中单核细胞的先天免疫系统的重要组成部分,并有助于宿主的炎症和肿瘤发育。巨噬细胞经常转化为肿瘤微环境中与肿瘤相关的巨噬细胞(TAM),这不仅促进了肿瘤的生长和转移,而且还导致对化学疗法和免疫疗法的抗性,从而使巨噬细胞具有吸引人的巨噬细胞,以吸引肿瘤学的组合疗法。巨噬细胞重编程是指通过改变其功能和表型来调节其在免疫反应和肿瘤微环境中的作用,并涉及多种机制,包括经典的M1/M2极化,代谢重新编程,表观遗传调节,表观遗传调节,途径调节,路径调节和肿瘤微观环境中的路径调节。在这里,我们回顾了肿瘤中巨噬细胞极化和治疗的最新研究,巨噬细胞重编程的不同机制,并展望巨噬细胞重编程的未来。
大脑并引起原发性微积分Rebekah Rushforth 1,5†,Hanan E Shamseldin 2†Nicole Costantino 1,Jes-Rite Michaels 1,Sarah L Sawyer 3,Matthew Osmond 3,Matthew Osmond 3,Matthew Osmond 3,Wesam Kurdi 2 Alkuraya 2,Rolf W. Stottmann 1,5†这些作者同样为这项工作做出了贡献。摘要小头畸形会影响每年2500名婴儿中的1个。原发性小头畸形是由于异常神经发生导致出生时大脑小的引起的。这是由于神经元的增殖和/或早期分化的改变。神经元的过早分化与中心体和/或原发性纤毛中的缺陷有关。在这项研究中,我们报告了第一批具有NUBP2缺陷的患者,并利用有条件的小鼠模型来确定与NUBP2缺陷型原发性小头畸形相关的分子机制。我们确定了这些患者的纯合NUBP2变体,除宫内生长限制,宫颈颅关,严重的关节和面部畸形外,还表现出了严重的原发性小头畸形。然后,我们使用EMX1-CRE生成了一个鼠标模型,从前脑燃烧NUBP2。从E18.5开始出现严重的小头畸形的小鼠。神经球从emx1-cre的前脑产生; NUBP2 FLOX/FLOX条件缺失小鼠用于支持患者变异的致病性。我们表明,NUBP2的丧失会增加规范和非典型细胞死亡,但是p53的损失无法挽救小鼠模型中的小头畸形。检查EMX1-CRE中的神经发生; NUBP2 Flox/Flox小鼠揭示了增殖和细胞迁移的明显变化,并伴有上心的中心体和纤毛。 因此,我们建议NUBP2是一种新型的原发性小头畸形基因,NUBP2在中心体和纤毛调节中的作用对于适当的神经发生至关重要。 1 Steve和Cindy Rasmussen基因组医学研究所,Abigail Wexner研究所,美国俄亥俄州哥伦布市全国儿童医院,美国俄亥俄州43205,美国。 2菲萨尔国王专科医院和研究中心转化基因组学系,沙特阿拉伯利雅得。 3个安大略省东部研究所的儿童医院,加拿大安大略省渥太华大学。 4人类遗传学部,辛辛那提儿童医学院,辛辛那提,俄亥俄州45215,美国。 5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国检查EMX1-CRE中的神经发生; NUBP2 Flox/Flox小鼠揭示了增殖和细胞迁移的明显变化,并伴有上心的中心体和纤毛。因此,我们建议NUBP2是一种新型的原发性小头畸形基因,NUBP2在中心体和纤毛调节中的作用对于适当的神经发生至关重要。1 Steve和Cindy Rasmussen基因组医学研究所,Abigail Wexner研究所,美国俄亥俄州哥伦布市全国儿童医院,美国俄亥俄州43205,美国。 2菲萨尔国王专科医院和研究中心转化基因组学系,沙特阿拉伯利雅得。 3个安大略省东部研究所的儿童医院,加拿大安大略省渥太华大学。 4人类遗传学部,辛辛那提儿童医学院,辛辛那提,俄亥俄州45215,美国。 5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国1 Steve和Cindy Rasmussen基因组医学研究所,Abigail Wexner研究所,美国俄亥俄州哥伦布市全国儿童医院,美国俄亥俄州43205,美国。2菲萨尔国王专科医院和研究中心转化基因组学系,沙特阿拉伯利雅得。 3个安大略省东部研究所的儿童医院,加拿大安大略省渥太华大学。 4人类遗传学部,辛辛那提儿童医学院,辛辛那提,俄亥俄州45215,美国。 5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国2菲萨尔国王专科医院和研究中心转化基因组学系,沙特阿拉伯利雅得。3个安大略省东部研究所的儿童医院,加拿大安大略省渥太华大学。 4人类遗传学部,辛辛那提儿童医学院,辛辛那提,俄亥俄州45215,美国。 5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国3个安大略省东部研究所的儿童医院,加拿大安大略省渥太华大学。4人类遗传学部,辛辛那提儿童医学院,辛辛那提,俄亥俄州45215,美国。5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国5俄亥俄州立大学医学院儿科,俄亥俄州哥伦布,俄亥俄州43210,美国
进行大规模研究以从多个设施中收集大脑MR图像时,在每个站点的成像设备和协议中的差异的影响不容忽视,并且近年来,该域间隙已成为一个重要的问题。在这项研究中,我们提出了一种称为样式编码器对抗域的适应(SE-ADA)的新的低维表示(LDR)施加方法,以实现基于内容的图像检索(CBIR)的大脑MR图像。se-ADA通过将特异性信息与LDR分开,并使用对抗性学习来最大程度地减少域差异,从而减少了域差异。在评估实验中,将SE-ADA与八个公共大脑MR数据集(ADNI1/2/3,OASIS1/2/3/4,ppmi)进行比较的域进行了比较,SE-ADA有效地删除了域信息,同时保留了原始大脑结构的关键方面并证明了最高疾病搜索的准确性。
全球环境中微塑料和纳米塑料 (MNP) 浓度不断上升,引发了人们对人类接触和健康结果的担忧。用于稳健检测组织 MNP 的补充方法,包括热解气相色谱-质谱法、衰减全反射-傅里叶变换红外光谱法和带能量色散光谱的电子显微镜,证实了人类肾脏、肝脏和脑中存在 MNP。这些器官中的 MNP 主要由聚乙烯组成,其他聚合物的浓度较少但很重要。与肝脏或肾脏中的塑料成分相比,脑组织中聚乙烯的比例更高,电子显微镜证实了分离的脑 MNP 的性质,它们主要呈现为纳米级碎片状碎片。这些死亡组织中的塑料浓度不受年龄、性别、种族/民族或死因的影响;死亡时间(2016 年 vs. 2024 年)是一个重要因素,肝脏和脑样本中的 MNP 浓度随时间推移而增加(P = 0.01)。最后,在一组有痴呆症诊断的死者脑中观察到了更大的 MNP 积累,脑血管壁和免疫细胞中明显沉积。这些结果强调,迫切需要更好地了解塑料在人体组织(尤其是脑)中的暴露途径、吸收和清除途径以及潜在的健康后果。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 20 日发布。;https://doi.org/10.1101/2024.12.19.629459 doi:bioRxiv preprint
属于同一类别的物体往往会引发相似的大脑活动模式。在这里,我们反转这种映射,并询问神经相似性是否足以引起感知辨别和类别感知的增加。我们通过使用实时 fMRI 来修改高级视觉皮层中物体的神经表征来实现这一点。参与者观看一个物体并接收闭环神经反馈,促使他们以更类似于我们为该类别选择的大脑活动模式来表示该物体。在成功自我调节大脑活动后,参与者开始将分配给相同大脑模式的物体视为与分配给不同大脑模式的物体在类别上更不同。这些发现为理解和加速人类学习开辟了一条广阔的道路。
摘要。在本文中,我们提出了第一个基于阈值秘密共享(也称为阈值计算)的单个痕量侧渠道攻击,该攻击以其原始版本为单位(TCITH)。这个MPCITH框架可以在美国国家标准技术研究所(NIST)呼吁数字签名的最近第二轮中的14个数字签名计划中的5个中找到。在这项工作中,我们首先要突出显示TCITH框架的侧向通道漏洞,并在SDITH算法上显示它的剥削,这是该NIST调用的一部分。具体来说,我们利用了Galois字段中乘法函数的泄漏来对中间值进行预测,并使用算法的结构有效地组合了信息。这使我们能够建立攻击,这既是针对MPCITH框架的第一个软分析侧通道攻击(SASCA),也是对SDITH的第一次攻击。更具体地说,我们使用阈值变体结构来重建秘密密钥,基于信念传播(BP)来建立一个基于信念传播(BP)的SASCA。我们在锤量重量(HW)泄漏模型下进行模拟攻击,以评估该方案对SASCA的阻力。然后,我们在实际情况下,更具体地说是在STM32F407上执行攻击,并为所有安全级别恢复秘密键。我们通过讨论我们可以用来减轻攻击的各种改组对策来结束本文。
在最近的研究中,研究人员使用了大型语言模型(LLM)来探索大脑中的语义表示。但是,他们通常分别评估了不同级别的语义内容,例如语音,对象和故事。在这项研究中,我们使用功能磁共振成像(fMRI)记录了大脑活动,而参与者则观看了8.3个小时的戏剧和电影。我们在多个语义级别注释了这些刺激,这使我们能够为此内容提取LLM的潜在表示。我们的发现是LLMS比传统语言模型更准确地预测人脑活动的结果,尤其是对于复杂的背景故事。此外,我们确定了与不同语义表示相关的不同大脑区域,包括多模式视觉 - 语义表示,这突出了同时建模多级和多态语义表示的重要性。我们将使我们的fMRI数据集公开使用,以促进对LLM与人脑功能保持一致的进一步研究。请在https://sites.google上查看我们的网页。com/view/llm and-brain/。
MD,美国。4. DeepSeq,诺丁汉,英国。5. 乌普萨拉大学免疫学、遗传学和病理学系生命科学实验室,瑞典乌普萨拉。6. 莱斯大学计算机科学系,美国德克萨斯州休斯顿主街 6100 号。* 通讯作者;贡献相同摘要单细胞 DNA 测序的出现揭示了基因组变异的惊人动态,但未能表征在种系水平上具有深远影响的较小到中等尺寸的变异。在这项工作中,我们利用单细胞长读测序发现了三个大脑中的新动态。这为了解单个细胞基因组的动态提供了关键见解,并进一步强调了转座因子的大脑特定活动。主要单细胞全基因组扩增(WGA)使通常使用短读在低覆盖率 1 下进行的单细胞全基因组测序(scWGS)成为可能,它通常只能检测 Mb 级 CNV,尽管据报道识别了 > 50kbp 的 CNV 2 。无论如何,许多预期的变体(如 Alu 或 LINE 变体)都被遗漏了。这些转座因子 (TE) 家族是最丰富和活跃的转座子,总共占人类基因组的约 27% 3 ,并有助于健康神经元 4 和神经退行性疾病 5–7 的重组。同时,长读测序的出现使得准确检测 Alu 或其他转座子介导的突变成为可能 8 。最近有报道称,在液滴中使用等温多重置换扩增 (MDA) (dMDA) 进行 WGA 后,在 T 细胞上使用长读 scWGS (scWGS-LR) 来组装单个细胞的一个基因组。然而,它的成本很高,而且由于嵌合体和扩增子大小限制,完整性有限 9 。尽管如此,这为进一步探索类似的方法是否能为单细胞的基因组变异提供新的见解开辟了新领域。