揭示缩放规则对于理解生命系统的形态、生理和进化是必不可少的。对动物大脑的研究揭示了一般模式,例如哈勒规则,以及特定动物分类群的特定模式。然而,从未进行过旨在研究昆虫大脑中整个神经网和细胞体皮的比例的大规模研究。在这里,我们对 26 个科和 10 个目中的 37 种昆虫的成年大脑进行了形态测量研究,体积从最小到最大相差超过 4,000,000 倍,结果表明,所有研究的昆虫的神经网与细胞体皮的体积比都相似,为 3:2。所有昆虫的异速生长分析表明,神经网体积与大脑体积的比例严格等距变化。特定分类群、大小组和变态类型的分析也表明神经网的相对体积没有显著差异;在所有情况下都观察到等距。因此,我们建立了一个新的缩放规则,根据该规则,昆虫大脑中整个神经丛的相对体积平均为 60% 并保持不变。
在哺乳动物的大脑中,岛叶是参与味觉感知的主要皮质基质。最近对啮齿动物的成像研究发现,岛叶中存在“味觉”组织,其中不同的岛叶区域对五种基本味觉中的一种有选择性地反应。然而,许多对猴子的研究报告称,味觉皮质神经元对多种味觉具有广泛的调节作用,而且味觉并不表现在离散的空间位置上。迄今为止,人类的神经成像研究无法区分这两种模型,尽管这可能是因为迄今为止味觉研究中使用的空间分辨率相对较低。在本研究中,我们使用高磁场强度(7 特斯拉)下的超高分辨率功能性磁共振成像 (MRI) 检查了人类大脑中味觉的空间表征。在扫描过程中,男性和女性参与者品尝了甜味、咸味、酸味和无味的液体,这些液体通过定制的 MRI 兼容味觉传递系统传递。我们的单变量分析显示,所有味道(与无味相比)都会激活双侧背部中岛叶内的初级味觉皮层,但没有一个大脑区域表现出对任何一种味道的一致偏好。然而,我们的多变量探照灯分析能够可靠地解码这些中岛叶区域以及涉及影响和奖励的大脑区域(如纹状体、眶额皮质和杏仁核)内不同味道的身份。这些结果表明,味觉质量不是通过地形来表示的,而是由分布式群体代码表示的,无论是在初级味觉皮层中,还是在涉及处理味觉的享乐和厌恶特性的区域内。
在1960年代引入了啮齿动物中枢神经系统(CNS)中多巴胺(DA),去甲肾上腺素(Na)和5-羟色胺定位的组织化学法。它支持中枢神经系统中化学神经传递的存在。下脑茎中的单胺神经元向脑脑,依伯龙和单胺的降序系统形成了单突触的升序系统。单胺是在建议通过中枢神经系统中的突触化学传输来进行的。这种化学传播降低了电气传输的影响。在1969年和1970年代的指示中表明,中枢神经系统中的化学单胺通信的重要模式也通过突触外流体,细胞外流体以及涉及DA,Na和na和羟色胺等跨发司的流动和流动的大脑脑脊液中的长距离通信进行。在1986年,这种传播被Agnati和Fuxe及其同事命名为体积传输(VT),其特征在于发射机静脉曲张和受体不匹配。短距离和长距离VT途径的特征是体积分数,曲折和清除率。哺乳动物中枢神经系统中也存在电气传播,但化学传递处于主导地位。一种电气模式由缝隙连接形成的电突触表示,这些突触代表神经细胞之间的低耐药通道。与化学传播相比,它允许神经细胞之间的动作电位更快。第二种模式基于突触电流生成电场调节化学传输的能力。一个目的是了解如何与电气传输集成到化学传输以及星形胶质细胞中假定的(Aquaporin Water通道,多巴胺D2R和腺苷A2AR)配合物如何显着参与从Glymphatic System中清除废物的清除。vt也可能有助于完成针灸子午线对中药必不可少的操作,鉴于所指出的细胞外VT途径的存在。
摘要背景:种族通常被用来代替多种特征,包括社会经济地位。分离这些因素,找出影响婴儿结果的机制,如出生体重、胎龄和大脑发育,并指导适当的干预措施和制定公共政策,这些都至关重要。方法:使用人口统计学、社会经济和临床变量来模拟婴儿结果。在出生体重和胎龄的分析中,共有 351 名参与者被纳入。对于使用脑体积的分析,在删除缺少磁共振成像扫描和符合我们排除标准的参与者后,共纳入 280 名参与者。我们用线性和非线性模型对这三种不同的婴儿结果进行了建模,包括婴儿大脑、出生体重和胎龄。结果:非线性模型比线性模型更能预测婴儿出生体重(R 2 = 0.172 vs. R 2 = 0.145,p = .005)。与线性模型相比,非线性模型在对出生体重进行建模时,将收入、邻里劣势和歧视经历的重要性排在了种族之前。种族不是妊娠周龄或结构性脑容量的重要预测因素。结论:与现有的社会科学文献一致,与出生体重相关的研究结果表明,种族是与结构性种族主义相关的非线性因素的线性替代。能够解开通常与种族相关的因素的方法对于政策制定很重要,因为它们可以更好地识别和排列影响结果的可修改因素。
“在寻求大脑中自闭症谱系障碍行为的根本原因时,我们发现神经递质的早期变化是主要原因的好候选者,”生物学科学学院尼古拉斯·斯皮策(Nicholas Spitzer)说,神经生物学系和大脑和思想研究所的尼古拉斯·斯皮策(Nicholas Spitzer)。“掌握触发ASD的早期事件可能会允许开发新的干预措施,以防止这些行为的出现。”
脑机接口使神经科学家能够将特定的神经活动模式与特定的行为联系起来。因此,除了目前的临床应用外,脑机接口还可用作研究大脑学习和可塑性的神经机制的工具。数十年来使用此类脑机接口的研究表明,动物(非人类灵长类动物和啮齿动物)可以通过操作条件反射自我调节大脑各种运动相关结构的神经活动。在这里,我们要问的是,人类大脑是一个由超过 800 亿个神经元组成的复杂互连结构,它能否学会在最基本的层面——单个神经元——上自我控制。我们利用这个独特的机会记录了 11 名癫痫患者的单个单元,以探索边缘系统和其他与记忆相关的大脑结构中单个(直接)神经元的发放率是否可以受到意志控制。为此,我们开发了一个视觉神经反馈任务,训练参与者通过调节他们大脑中任意选择的神经元的活动来移动屏幕上的方块。值得注意的是,参与者能够有意识地调节这些以前未经研究的结构中的直接神经元的发放率。我们发现一部分参与者(学习者)能够在一次训练课程中提高他们的表现。成功的学习的特点是:(i)直接神经元的高度特异性调节(表现为发放率和爆发频率显著增加);(ii)直接神经元的活动与邻近神经元的活动同时去关联;(iii)直接神经元与局部 alpha/beta 频率振荡的稳健锁相,这可能为促进这种学习的潜在神经机制提供一些见解。记忆结构中神经元活动的意志控制可能为探索人类记忆的功能和可塑性提供新方法,而无需外部刺激。此外,这些大脑区域神经活动的自我调节可能为开发新型神经假体提供途径,用于治疗通常与这些大脑结构中的病理活动相关的神经系统疾病,例如药物难治性癫痫。
大脑中的障碍是神经系统的指挥中心,控制和组织活体中的重要功能和行为。它具有独特而复杂的屏障系统,例如血脑屏障(BBB),可维持和调节大脑稳态。BBB限制了小分子和大分子的进入,以及电代毒剂的进入中枢神经系统(CNS)。BBB还限制了可以输送到中枢神经系统的药物的量,从而限制了其治疗脑疾病的治疗功效。此外,与大脑相关疾病的手术治疗通常需要侵入性和严重手术。因此,高度希望对脑部疾病的最小和非侵入性疗法降低死亡率和相关的残疾。
属于同一类别的物体往往会引发相似的大脑活动模式。在这里,我们反转这种映射,并询问神经相似性是否足以引起感知辨别和类别感知的增加。我们通过使用实时 fMRI 来修改高级视觉皮层中物体的神经表征来实现这一点。参与者观看一个物体并接收闭环神经反馈,促使他们以更类似于我们为该类别选择的大脑活动模式来表示该物体。在成功自我调节大脑活动后,参与者开始将分配给相同大脑模式的物体视为与分配给不同大脑模式的物体在类别上更不同。这些发现为理解和加速人类学习开辟了一条广阔的道路。
如前所述,谎言被用来为拟议改进之前和之后的模型预测提供解释。没有细化,解释显示出次优的肿瘤节覆盖率,平均仅为32.41%。在引入改进机制后,使用了三种不同的技术(Canny,Laplace,Otsu的阈值)用于生产脑面膜。为了确定生成有意义解释的最佳段数,我们探索了使用精制的石灰图像解释器选择最佳的1、3和5段的影响。检查肿瘤细分市场的覆盖范围,我们发现依靠单个细分市场的平均覆盖率为27.63%,非常类似于挑选最佳3个细分市场而没有我们的细化的表现。选择最佳的3个细分市场时,观察到了实质性的改进,平均增加到50.28%。采用5个部分的肿瘤覆盖率为63.84%。
。cc-by-nd 4.0国际许可在A未获得Peer Review的认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作