•小血管疾病是由于小动脉硬化(有时称为“小动脉硬化”)高血压(高血压)是大脑中小血管疾病的原因。在很长一段时间内,高血压会损害大脑内部的小血管,使其变硬,并使墙壁变得脆弱,容易出血。如果这些小动脉阻塞之一,则由于流向脑细胞的血液流失而产生的损害较小区域,看起来像脑部扫描的微小疤痕。小血管疾病与认知能力下降和痴呆症密切相关。它还使造血中风更有可能发生在大脑的深层部分。•脑淀粉样血管病(CAA)这是第二种常见的小血管疾病,尤其是在老年人中。CAA是一种称为淀粉样蛋白β的蛋白质在大脑表面附近的小血管内积聚。这会损害血管,使其更有可能流血。这可能导致大脑出血(ICH)导致中风,也可能导致大脑表面出血。当出血在大脑表面时,它会引发反复出现的症状,例如引脚和针头,麻木或无力的症状。这些被称为瞬态局灶性神经系统发作(TFNES)。
功能梯度,其中响应特性在大脑区域逐渐变化,作为大脑的关键组织原理。使用静止状态和自然观看范式的最新研究表明,这些梯度可以通过“连接映射”分析从功能连接模式重建。然而,局部连接模式可能会被数据分析期间的空间自相关所混淆,例如,通过坐标空间之间的空间平滑或插值。在这里,我们研究了这种混杂是否可以产生虚幻的连接梯度。我们生成了包含受试者功能体积空间中随机白噪声的数据集,然后选择使用空间平滑和/或将数据插入到不同的体积或表面空间中。平滑和插值引起的空间自相关能力用于连接映射,以在许多大脑区域产生体积和表面的局部梯度。此外,这些梯度似乎与从真实自然观看数据中获得的梯度高度相似,尽管在某些情况下从真实数据和随机数据产生的梯度在统计上是不同的。我们还重建了整个脑的全球梯度 - 尽管这些梯度似乎不太容易受到人工空间自相关的影响,但再现先前报道的梯度的能力与分析管道的特定特征紧密相关。这些发现意味着需要谨慎解释连接梯度。这些结果表明,先前报道的连接映射技术鉴定出的梯度可能会被分析期间引入的人工空间自相关所混淆,在某些情况下,在不同的分析管道中可能会繁殖很差。
Hana Nedozrálová 1 , Pavel Křepelka 1 , Muhammad Khalid Muhammadi 2 , Žilka Norbert Žilka 2 , Jozef Hritz 1 1 Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 2 Institute of Neuroimmunology, Slovak Academy of Science, Bratislava, Slovakia Background包括。旨在使病理tau蛋白聚集体的积累是许多神经退行性疾病的标志,包括阿尔茨海默氏病。神经元中错误折叠的tau的积累是有毒的,它破坏了细胞生理学,导致神经元死亡和tau在整个大脑中的传播。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。 尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。 我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。 可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。 我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。 Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。导致此海报,我们介绍了原位可视化工作流程,并展示了初步的生物对比冷冻式纤维/SEM/SEM图像以及受tauopathy影响的鼠大脑组织的层状。结论我们表明,新型的生物对比度冷冻质量fib/sem成像工作流程可用于无需化学固定的病理组织的超微结构表征,并且与lamella callout和situ Cryo-et的结合为揭示神经变性细胞的细节提供了出色的工具。承认这项工作已获得捷克科学基金会(22-15175i)的资金。我们承认Cero-Electron显微镜和层析成像核心设施CIISB的CEITEC MU,指导CZ Center,由Meys CR(LM2023042)和欧洲区域发展基金会“ UP CIISB”(No.cz.02.1.01/0.0/0.0/18_046/0015974)。
摘要 先前关于控制基于 P300 的 BCI 拼写器的提案表明,在行列范式 (RCP) 下,使用替代图像代替字母作为目标刺激可以取得进步。然而,RCP 不适合那些缺乏凝视控制的患者。为了解决这个问题,先前的研究提出了快速序列视觉呈现 (RSVP) 范式。本研究的目的是评估一组可以提高 RCP 表现的替代图片是否也可以提高 RSVP 的表现。16 名参与者在校准和在线任务中控制了四种条件:RCP 中的字母、RCP 中的图片、RSVP 中的字母和 RSVP 中的图片。无论是在性能分析还是事件相关电位分析中,RCP 下图片带来的效果都大于 RSVP 下。事实上,与字母相比,RSVP 下的图片并没有显示出任何改进。此外,大多数用户 (68.75%) 表示 RCP 下的图片条件是最喜欢的,而 RSVP 下的图片条件却没有被任何参与者选为最喜欢的。因此,这项研究表明,在 RCP 下使用图片作为替代闪光刺激所带来的改善可能无法转移到 RSVP。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2024年9月23日发布。 https://doi.org/10.1101/2024.09.19.609743 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
辉瑞的生成人工智能(AI)辅助技术,Maia(医疗人工智能助理)用于生产此抽象的简单语言摘要,以准备初稿。使用此工具/服务后,作者根据需要审查并编辑了内容,并对出版物的内容承担全部责任。
镰状细胞贫血和β-丘脑贫血镰状细胞疾病是由同义突变引起的,该突变在β-糖蛋白亚基中与谷氨酸交换了谷氨酸。4该突变的纯合遗传导致疾病表型,而杂合载体不表现出临床疾病症状。杂合载体也称为具有镰状细胞性状。4这种氨基酸取代会导致红细胞中脱氧的血红蛋白刚性聚合物,最终形成了经典的镰状形态。2镰状红细胞遮住了微脉管系统,导致组织缺氧,梗塞和慢性溶血性贫血。4因此,镰状细胞贫血呈现出异质的临床表现范围,包括疼痛,中风,血管闭塞发作,多器官损伤,生活质量降低和寿命缩短。2,4
动物模型中的无任务功能连接提供了一个实验框架,以检查在受控条件下的连接现象,并可以与在侵入性或终端程序中收集的数据方式进行比较。当前,动物采集是通过各种方案和分析进行的,这些方案和分析会妨碍结果比较和整合。在这里,我们介绍了标准装置,这是一个共有的大鼠功能磁共振成像采集方案,该协议在20个中心进行了测试。要使用优化的采集和处理参数来开发此协议,我们最初汇总了从46个中心从大鼠那里获取的65个功能成像数据集。我们开发了一种可再现的管道,用于分析具有不同协议获得的大鼠数据,并确定了与跨中心功能连通性的可靠检测相关的实验和处理参数。我们表明,标准化协议增强了相对于以前的采集而增强生物学上合理的功能连接模式。此处描述的协议和处理管道与神经成像社区公开共享,以促进互操作性和合作,以应对神经科学中最重要的挑战。
6马萨诸塞州波士顿,马萨诸塞州医学院神经学系神经技术与神经记录中心 * (sstavisky@ucdavis.edu)摘要:大脑计算机界面(BCIS)有可能恢复因神经系统疾病或受伤而失去说话能力的人的沟通。bcis已被用来将尝试语音的神经相关性转化为文本1-3。但是,文本交流未能捕捉人类言语的细微差别,例如韵律,语调和立即听到自己的声音。在这里,我们展示了一种“脑对舞会”神经假体,即通过解码植入人类腹膜前缘的256个微电腹膜中的256个微电腹膜中腹膜上腹膜中腹膜上腹膜和严重的dysarthria的男性中腹膜的神经活动来立即与闭环音频反馈合成声音。我们克服了缺乏对训练神经解码器的基本真相的挑战,并能够准确地综合他的声音。与语音内容一起,我们还能够从心理学活动中解码副语言特征,从而使参与者实时调节他的BCI-BCIS综合声音以更改语调,强调单词并唱着短旋律。这些结果证明了使瘫痪者能够通过BCI进行明智和表达的人的可行性。简介:说话是一种基本的人类能力,失去说话的能力对于患有神经系统疾病和伤害的人来说是毁灭性的。大脑计算机界面(BCIS)是一种有希望的疗法,可以通过解码神经活动绕过神经系统受损的部分来恢复语音4。BCI的最新演示重点是将神经活动解码为屏幕2,3的文本,其精度很高1。这些方法提供了一种中间解决方案来恢复沟通,但单独与文本的沟通却没有提供具有闭环音频反馈的数字替代人声仪,并且无法恢复人类语音的关键细微差别,包括韵律,语调,语气和音调。