摘要 - 腿部机器人正在出现,并且非常需要腿部的机车,这需要精确的腿部运动动力学来执行控制命令或计划运动轨迹。本文提出了在线状态估计,以确定具有任意腿部数量的机器人的腿部运动学,其中包括腿部变换,时间偏移和腿链路长度的运动学参数。尤其是我们主张一个地面舞蹈步态,以进行运动学的决心,脚趾在地面上保持静态并充当大满贯中的静态地标。作为视觉惯性传感器通常在机器人机器人上可用,并且位于浮动基础上,我们利用有效的基于MSCKF的视觉惯性导航来估计腿部运动学。为此,我们通过分析得出了腿部运动测量的分析,并将它们与视觉惯性测量紧密融合,以更新腿的运动学和身体运动。在模拟和实验中,该方法已通过不同的四倍体进行了广泛的验证,显示出其稳健性和准确性。
摘要 - 使用深钢筋学习训练的控制政策通常会产生僵硬的高频运动,以应对意外的干扰。为了促进更自然和合规的平衡恢复策略,我们建议对典型的强化学习训练过程进行简单的修改。我们的关键见解是,对扰动的僵硬响应是由于代理商始终激励任务奖励,即使在应用扰动的情况下也是如此。作为替代方案,我们引入了一个明确的恢复阶段,在该阶段中,无论控制策略所产生的动议如何,都会给予跟踪奖励。这使代理商有机会在尝试执行其主要任务之前从干扰中逐渐恢复。通过深入分析,我们既强调了由此产生的控制策略的合规性,以及合规性带来的益处。在我们的模拟和硬件实验中,合规的策略可实现与环境的更强大,能节能和安全的互动。
图1。我们提出的框架ABS展示了敏捷和无碰撞的运动能力,其中具有全部计算和感应的机器人可以安全地浏览混乱的环境,并迅速对室内和室外的多样化和动态障碍做出迅速反应。ABS涉及双政策设置:底部的绿线表示敏捷政策的控制,红线表示运行中的恢复策略。敏捷政策使机器人能够在障碍物中快速运行,而恢复政策可以使机器人摆脱敏捷政策可能失败的风险案例。子图:(a)机器人躲避了摇摆的人腿。(b)敏捷政策使机器人能够以3的峰值运行。1 m/s。(c)在高速运动期间,机器人躲避了移动的婴儿车。(d)机器人在白雪皑皑的地形中躲过一个动人的人。(e)机器人安全地在大厅内坐着静态和动态障碍物,平均速度为2。1 m/s,峰速度为2。9 m/s。(f)机器人避免在昏暗的走廊中的障碍和移动人类,平均速度为1。5 m/s,峰值速度为2。5 m/s。 (g)机器人,平均速度为2。 3 m/s,峰值速度为3。 0 m/s,避免移动和静态垃圾箱,并爬上草坡。 视频:请参阅网站。5 m/s。(g)机器人,平均速度为2。3 m/s,峰值速度为3。0 m/s,避免移动和静态垃圾箱,并爬上草坡。视频:请参阅网站。
图1。我们提出的框架ABS展示了敏捷和无碰撞的运动能力,其中具有全部计算和感应的机器人可以安全地浏览混乱的环境,并迅速对室内和室外的多样化和动态障碍做出迅速反应。ABS涉及双政策设置:底部的绿线表示敏捷政策的控制,红线表示运行中的恢复策略。敏捷政策使机器人能够在障碍物中快速运行,而恢复政策可以使机器人摆脱敏捷政策可能失败的风险案例。子图:(a)机器人躲避了摇摆的人腿。(b)敏捷政策使机器人能够以3的峰值运行。1 m/s。(c)在高速运动期间,机器人躲避了移动的婴儿车。(d)机器人在白雪皑皑的地形中躲过一个动人的人。(e)机器人安全地在大厅内坐着静态和动态障碍物,平均速度为2。1 m/s,峰速度为2。9 m/s。(f)机器人避免在昏暗的走廊中的障碍和移动人类,平均速度为1。5 m/s,峰值速度为2。5 m/s。 (g)机器人,平均速度为2。 3 m/s,峰值速度为3。 0 m/s,避免移动和静态垃圾箱,并爬上草坡。 视频:请参阅网站。5 m/s。(g)机器人,平均速度为2。3 m/s,峰值速度为3。0 m/s,避免移动和静态垃圾箱,并爬上草坡。视频:请参阅网站。
摘要 - 我们研究了配备有手臂的腿部机器人的移动操作问题,即腿部手机。机器人腿通常用于活动性,但通过进行全身控制提供了一个机会来扩大操纵功能。也就是说,机器人可以同时控制腿部和手臂以扩展其工作区。我们提出了一个可以通过视觉观测来自主进行全身控制的框架。我们的方法,即视觉全身控制(VBC),是由低级政策组成的,使用各个自由度来跟踪人体速度以及最终效应器位置以及基于视觉输入的速度和最终效应器位置的高级政策。我们在模拟中训练两个级别的策略,并执行SIM2REAL转移以进行实际机器人部署。我们进行了广泛的实验,并在以不同的配置(高度,位置,方向)和环境中拾取不同对象时表现出明显的优势。
摘要 - 基于学习的方法已经实现了四足动力的强大性能。然而,一些挑战阻止了四足动物学习需要与环境和人类互动的有用室内技能:缺乏操纵的最终效果,仅使用模拟数据使用有限的语义介绍,以及在室内环境中的较低的遍历性和可及性。我们提出了一个在室内环境中进行四足动物移动操作的系统。它使用前式握把进行对象操纵,这是一种低级控制器,在模拟中培训了以egile的深度进行训练,以攀登和全身倾斜等敏捷技能,以及预先训练的视觉语言模型(VLMS),并具有第三人称Fisheye和Egentric RGB摄像头,以探索fishereye和Egincentric RGB摄像头,以进行儿子理解和指挥生成。我们在两个看不见的环境中评估了我们的系统,而没有任何现实数据收集或培训。我们的系统可以零射对这些环境并完成任务,例如遵循用户的命令在攀登女王大小的床上,成功率为60%。
肢体残缺严重程度评分 (MESS) 预测挽救指数 (PSI) 肢体挽救指数 (LSI) 神经、缺血、软组织、骨骼、休克、年龄评分 (NISSSA) 汉诺威骨折量表 97 (HFS)
摘要 - 机器人技术中的社会导航主要涉及通过人口掩护的区域指导移动机器人,并且行人舒适度与有效的途径进行平衡。al-尽管在该领域已经看到了进步,但解决机器人无缝集成到行人环境中的解决方案仍然难以捉摸。在本文中,开发了一种用于腿部机器人的社会力量模型,利用视觉感知来进行人类本地化。特别是引入了增强的社会力量模型,并结合了基于行人行动的排斥力量和回避行为的精致解释,以及目标以下机制。通过各种情况,包括与即将到来的行人,人群和阻塞路径的相互作用,对四足机器人进行实验评估,这表明,所提出的增强模型在先前的基线方法上以选择的路径长度,平均速度以及有效和有效的社交导航的时间来显着改善基线方法。代码是开源的,而视频演示可以在项目的网页上找到:https://rpl-cs-ucl.github.io/asfm/
静脉腿溃疡(VLU)是晚期慢性静脉功能不全(CVI)的表现。在高级阶段,慢性静脉功能不全导致静脉瓣膜无能,这会导致逆行血流,阻塞或两者兼而有之。良好的静脉功能不全与心脏异常有关。尽管慢性心力衰竭(CHF)是一种普遍的心脏病,被认为是发展静脉溃疡的危险因素,但最近的研究发现两种疾病之间没有双向因果关系,并且建议进一步研究[1]。本报告提出了先前一致改善静脉溃疡,在急性CHF加剧过程中表现出停滞和恶化。溃疡被感染,并且愈合过程受到阻碍,从而促使手术清创术。此病例表明,急性CHF加剧可能在静脉溃疡代偿上发挥作用,并使两种病理学之间因果关系的可能性提供了信誉[2]。
目的:双腿、串联和左右单腿站立(DLS、TS、L-SLS 和 R-SLS)的总时间通常用于评估老年人的稳定性。为了提供老年人运动控制能力的详细信息,肌肉活动数据至关重要。背景:几种站立测试已用于评估老年人未来跌倒的可能性。将肌肉活动数据与站立测试一起纳入稳定性分析,将提供更可靠的姿势稳定性定量指标。方法:我们收集了 22 名老年参与者(70.3±4.2 岁)每条腿六块肌肉的表面肌电图 (sEMG) 数据,并使用大脑运动控制评估 (BMCA) 协议对其进行评估,重点关注幅度和相似性指数 (SI)。15 名能够保持站立至少 10 秒或更长时间的参与者组成对照组,而 7 名保持站立时间少于 10 秒的参与者被分为测试组。结果:对于右侧单腿站立 (R-SLS),对照组显示为 28.1(±3.5) 秒,而测试组平均为 8.9(±4.6) 秒。对照组所有站立姿势的总平均 EMG 幅度为 120.0(±45.6) uV,而测试组为 131.6(±75.5) uV (p > 0.56)。对照组的 SI 为 0.94(±0.04),测试组为 0.84(±0.15) (p < 0.02)。右侧和左侧之间没有发现显著差异。值得注意的是,两名测试组参与者在所有站立姿势下的 SI 值都很低(平均 SI = 0.69±0.16 和 0.60±0.12)。结论:我们应用 BMCA 协议来分析健康老年人在站立测试期间的 sEMG 模式。相似性指数有望成为一种有效的筛查工具,用于识别存在稳定性问题的人。此外,BMCA 协议可用于在各种稳定性测试中监测老年人的运动控制能力。应用:本研究使用 BMCA 协议评估这些姿势下的 sEMG,表明 SI 和维持时间可能是识别平衡困难的老年人的有效筛查工具。关键词:肌电图、单腿姿势、相似性指数、脑运动控制评估 (BMCA)、筛查工具