转移是指癌症扩散至继发性器官,约占癌症相关死亡的 90%,这主要是由于对传统治疗的抵抗力和器官衰竭。不幸的是,我们对转移演变(从其发生到治疗抵抗)的理解仍然有限。尽管自然选择作用于表型,但癌症研究传统上侧重于基因型改变。尽管付出了巨大的努力,但尚未确定赋予转移功能的特定基因改变。此外,细胞表型输出的调节是多层次的,转录和表观遗传机制都发挥着关键作用。为了解决这些关键的知识空白,我们成立了 ADAPTMET 联盟。该联盟的目标是加强转移性癌症的基础研究,最终影响药物开发并提高临床护理标准。这项计划与 Horizon Europe 的解决方案导向使命相一致,癌症是其优先领域之一。癌症进展涉及两种核心能力:侵入基质和在定植次级器官时适应恶劣环境。血管系统在肿瘤进展和治疗反应中起着至关重要的作用,与癌细胞共享信号传导和代谢途径。其他基质细胞(如成纤维细胞)表现出类似的
进化已被Darwin描述为“带有修改的下降”。进化不能成为个人现象,因为一个人生活并以固定的基因型死亡。最近,进化被认为是人口遗传组成的变化,而不是个人层面的变化。因此,人口而不是个人被视为进化的功能单位。随着基因和等位基因概念的发展,建立了遗传变异的遗传基础。和随时间的变化在亚种群中的遗传变异的相对频率是该物种进化的基础。人口的总遗传库存是其基因库。个体从该基因库中选择了一些等位基因,可能是随机进行的。hardy-weinberg平衡是一种计算在同一人群(和反之亦然)中确定的等位基因/基因频率的预期基因型频率的方法,假设随机交配,相等的生殖成功,没有相同的生殖成功,没有突变,没有选择或迁移的影响或迁移影响特定基因型。如果人口不符合Hardy-Weinberg的预测,那么这是一些实际影响的证据(例如,自然选择)打扰它。因此,如今正在广泛研究基因频率和改变这些频率,例如突变,迁移选择和遗传漂移等频率的力。
工业和军事中使用的化学物质,以及较差的废物管理,造成土壤,水和空气污染。污染物由于抵抗降解过程而构成健康风险。常规方法是昂贵的,并产生次要污染。生物修复使用酶和纳米技术提供生态友好型替代品,以原位或Ex sit进行有效的污染物去除。微生物通过通过矿化等过程将有毒元素转化为有害的化合物,在生物修复中起着至关重要的作用。它们可以在不同的环境中生存并利用各种底物,从而有效地去除污染物。微生物利用诸如固定化和动员之类的机制从环境中去除污染物,并具有不同类型的细菌,专门降解特定的污染物。酶工程涉及处理生物技术应用的生物分子和过程。两种主要策略是理性设计,需要先验知识和定向进化,以受控方式模仿自然选择。有理设计结合了特定反应的微生物或酶,而定向进化可以通过随机诱变创造基因变异,以实现所需特征。两种方法旨在改善生物修复应用的酶。
本系列[1]中的第一篇文章讨论了“细胞The-Ory”的起源。该理论将细胞确定为所有动物和植物的基础,到1850年代在生物学研究人员中广为人知。但是,配子的细胞分裂或产生的过程或它们在遗传生物特征的遗传传播中的作用仍然未知。格雷戈尔·约翰·孟德尔(Gregor Johann Mendel)于1865年根据他对花园豌豆的精心计划和执行的实验,在1865年提供了第一个确定的法律制定法律。然而,门德尔的出色发现在他的一生中仍然是完全未知的,在此期间对细胞的强烈研究和生物学进化。例如,有机避免的开拓者,例如J。B. Lamarck提出了“使用和使用”理论来修饰物种字符的特征,后来独立地提出了自然选择小型变化的Ory的Charles Darwin和Alfred Wallace,几乎没有理解生物学本机制。在门德尔(Mendel)在1900年发布的继承定律与其重新发现之间的35年中,细胞分裂和配子生产得到了极大的理解。但是,由于跨话有限,细胞学家和育种者(动植物)在很大程度上仍然不知道其他领域的发展。
基因组分化图景(即基因组中不同种群或物种之间差异的分布)越来越多地被描述,以了解自然选择和重组等微进化力量在导致和维持遗传分化方面所起的作用。这方面研究还表明,染色体结构变异是塑造适应性遗传变异图景的重要因素。由于染色体结构变异的普遍性及其固着性质所必需的强大局部适应压力,双壳类软体动物是探索染色体结构变异与局部适应之间关系的理想分类单元。在这里,我们报告了使用最近的染色体水平基因组组装对东北大西洋自然分布范围内的大扇贝 (Pecten maximus) 进行的种群基因组调查。我们报告了至少三个较大的(12 – 22 Mb)染色体倒位,这些染色体倒位与海面温度有关,其频率与中性种群结构形成对比。这些结果强调了重组抑制染色体倒位在局部适应中可能发挥的巨大作用,并提出了一个假设来解释在相对较小的空间尺度上在王扇贝种群中发现的生殖时间差异的维持。
气候变化将在未来几十年内从根本上重塑地球上的生命。因此,了解物种应对温度升高的程度至关重要。表型可塑性是生物体改变其基因组对环境所编码的形态和功能性状的能力。我在这里表明,可塑性不仅弥漫在天然的系统中,还可以模仿生物生物的发育过程,例如自我复制和不断发展的计算机程序 - 数字生物。具体来说,环境可以修改从数字有机体的基因组执行的指令顺序(即其转录组),这会导致其表型的变化(即数字有机体执行布尔逻辑操作的能力)。这种基于遗传的可塑性途径的适应性成本可以使生物体的生存能力和发电时间:转录组(较高的健身成本)越长,环境改变遗传执行流量控制的机会就越大,并且基因组对编码新表型的可能性越高。通过研究数字有机体的基因组和环境的影响在多大程度上,我在自然和人工化的系统之间建立了平行性,介绍了自然选择如何从整体环境控制到总基因组控制到总基因组控制的任何地方,从而使人们不仅可以更轻松地设计生物学的生物学,而且还要降低了对现实的人工体系的影响。
接触追踪已成为一种强大而有效的措施,以遏制传染性疾病的传播。这是一个强大的工具,但由于接触跟踪需要收集大量个人信息,因此不利的一面是侵犯隐私的风险。因此,需要一个加密原始的原始词,以使用户的个人数据混淆。考虑到所有内容,私人集交叉路口似乎是解决问题的自然选择。几乎所有现有的PSI协议都依赖于基于理论假设的硬性问题。但是,这些问题在量子域中并不安全。因此,对于设计可以抵抗量子攻击并提供长期安全性的PSI至关重要。一个人可以应用量子密码学来开发这种PSI协议。本文使用量子密码学(QC)介绍了PSI的设计,其中安全性取决于基本量子力学的原理。我们的计划实现了长期的安全性,并且由于使用QC而保持量子攻击。与现有的量子PSI协议相反,我们计划的通信和计算成本独立于通用集合的大小。特别是,提出的协议在量子PSI领域实现了最佳的通信和计算成本。此外,与大多数现有的量子PSI协议不同,我们仅需要单个光子量子资源和简单的单粒子投影测量值。
进化生物学提供了一个统一的理论,用于测试有关激素与人感知之间关系的假设。人们的感知通常从性选择的角度受到关注。但是,由于人的感知是受激素调节的套件中的一个特征,因此单变量方法不足。在这一观点文章中,定量遗传学被视为一个重要但未充分利用的框架,用于测试本文中的进化假设。我们注意到当前有关精神遗传学的文献中的默认假设,这些假设危及到迄今为止的发现的解释。作为各种特征多种流形的调节因子,激素介导了一系列功能之间的权衡。激素多效性还提供了相关选择的基础,该过程在激素介导的套件中对一个性状进行选择会在其他特征中产生选择。该体系结构为激素介导的套件内的性和自然选择之间的冲突提供了基础。由于其在人的感知,精神疾病和生殖生理学中的作用,性激素雌激素被强调为这里的典范。讨论了该框架对人感知演变的含义。对荷尔蒙介导的套件中特征的选择的经验量化仍然是文献中的重要差距,具有阐明精神疾病的基本本质的巨大潜力。
在州和国家K-12级的进化生物学指导充满了挑战。我们需要新的方法来教授和吸引学生,老师和公众进化教育。因此,我们正在开发具有生物进化模型的视频游戏。我们的前提是,在视频游戏中添加生物学演变使游戏玩家更好,并促进玩家对难以教学的复杂概念的理解。传统的视频游戏通常是脚本的,具有定义和可预测特征的敌人的“波浪”。玩家在此类游戏中的成功是基于学习可预测的死记硬背脚本,以提高到后续的水平。通过整合进化生物学的原则,我们认为可以使视频游戏更具吸引力。在视频游戏中未正确实现进化的原因之一是,人们认为进化是一个固有的缓慢而渐进的过程 - 减慢为视频游戏增加了很多价值。在本文中,我们描述了两个简单的视频游戏,其中几代敌人通过自然选择进行适应。敌人具有最好的特征,可以最好地抵消玩家的策略以繁殖的生存,并在下一代中突出其后代特征(类似于游戏水平或波浪)。在这两种情况下,我们都表现出敌人人群的显着表型演变,而随时间尺度可以进行游戏。
相反,它作用于次要元素,这些元素对选择性中性或有害进化变化产生的原发性元素的有害作用(Covello&Gray,1993; Gray等,2010; Stoltzfus,1999)产生的原发性效果。在建设性中性进化期间,选择性中性进化过程和选择共同创建复杂而复杂的结构或行为模式。中性进化过程产生了无用或有害的主要元素,而自然选择产生了次要元素,从而使主要元素对生物体功能的负面影响产生了负面影响。由于选择性中性进化过程,最初以简单形式产生的结构的复杂性逐渐增加,因为原始原始元素被补充了新的二级元素,这些元素中和基本元素的不良反应以维持生物体的功能状态。这些次要元素的出现可能会产生一个进化陷阱 - 一旦出现,它们就会增加其他主要元素通过中性进化过程(例如诱变的作用)积累的可能性,因为它们的负面影响会立即被神经化。这将产生选择压力,以开发进一步的次要元素,以消除由中性进化过程产生的新元素的其他负面后果。结果,整个系统变得越来越复杂,由两种类型的元素组成的新兴结构可能