近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
可穿戴设备是一种快速增长的技术,对社会和经济的个人医疗保健产生了影响。由于传感器和分布式网络中传感器的广泛影响,功耗,处理速度和系统适应性对于将来的智能可穿戴设备至关重要。对如何在智能传感器中将计算到边缘的视觉和预测已经开始,并渴望提供自适应的极端边缘计算。在这里,我们提供了针对智能可穿戴设备的硬件和理论解决方案的整体视图,可以为这个普遍的计算时代提供指导。我们为在可穿戴传感器的神经形态计算技术中持续学习的生物合理模型提出了各种解决方案。为了设想这个概念,我们提供了一个系统的概述,其中预期在神经形态平台中可穿戴传感器的潜在低功率和低潜伏期情景。我们依次描述了利用互补金属氧化物半导体(CMOS)和新兴记忆技术(例如MEMRISTIVE设备)的神经形态处理器的重要潜在景观。此外,我们根据足迹,功耗,延迟和数据大小来评估可穿戴设备内边缘计算的要求。我们还研究了神经形态计算硬件,算法和设备以外的挑战,这些挑战可能阻碍智能可穿戴设备中自适应边缘计算的增强。
对于我们正在处理的系统,经典的PID不足,因为它不是线性系统。PID控制器的启动需要在参数调整中并不总是简单的工作,除了某些方法的存在[10]。尽管有这些方案的帮助,但有必要进行观察期调查控制器的性能,在某些情况下,这需要大量时间。在控制器启动服务中,这可以解释为缺点或困难。在更复杂的情况下,动态现象损害了PID控制器的性能,因此需要重新调整控制器参数。我们接下来要做的是根据参考和实际速度将我们的非线性系统划分为多个线性子系统。就像我们以前所做的那样,我们现在将获得每个不同条件的关键增益和持续振荡时期。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
城市绿色基础设施(UGI)在通过自适应管理方法将生物多样性保护与可持续城市发展的可持续发展方面至关重要。本文介绍了一个综合概念框架,该框架整合了生态原理,城市规划策略和自适应管理方法,以培养有弹性和生物多样性的城市景观。UGI的本质在于它能够增强生态连通性,恢复生态系统功能并为城市环境中各种风水和动物群提供栖息地的能力。统治UGI设计的基本原则强调了其多功能性,连通性,多样性和可访问性,强调了以其迭代性和参与性为标志的适应性管理的重要性。尽管城市化带来的挑战,例如栖息地丧失,污染和气候变化,UGI干预措施为增强栖息地质量,连通性和生态系统弹性提供了有希望的途径。全球案例研究表明,UGI在生物多样性保护中的有效性,利用绿色屋顶,城市森林和社区花园等计划。UGI通过在各个领域提供多种生态系统服务,为可持续的城市发展做出了重要贡献。自适应管理对于有效的UGI规划和实施至关重要,在不断发展的环境条件下确保灵活性。但是,UGI遇到了障碍,包括资金限制,机构分裂和公平问题。应对这些挑战需要创新的培养机制,社区参与和政策创新。ugi提出了一种变革性的途径,可以促进弹性,生物多样性和可持续的城市景观,这对于城市在21世纪必须蓬勃发展。
随着全球气候变化和人类活动对陆地生态系统的日益增长,了解高山草原生态系统及其影响因素的质量对于有效的生态系统管理和改善人类福祉是至关重要的。但是,基于多标准评估的高山草原的当前自适应管理计划有限。这项研究利用了77个采样点,无人机遥感和卫星遥感数据的领域研究,根据植被和土壤指示器构建高山草原质量指数,并评估生态系统的弹性和压力。评估表明,藏族高原的高山草原被分为五个区域,表明质量和压力水平的显着差异。关键发现表明,高质量的压力区占高山草甸面积的41.88%,占高山草原的31.89%,而质量改善限制区则占相应区域的21.14%和35.8%。该研究建议基于质量水平的高山草原的分级保护和恢复策略:优先考虑高质量的草原,对中等优质草原的动态监测和增强,并应用人工干预措施以及适合低品质草原的物种。这项研究强调了基于分区的自适应策略对可持续生态系统管理的重要性,并为在藏族高原的有效管理和保护高山草原提供了宝贵的见解。
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
尽管在日常任务中对弱势群体(例如,老年人,儿童和残疾人)的辅助技术有很大的需求,但对高级AID辅助解决方案的研究确实满足了他们的各种需求,这仍然很少。传统的人机互动任务通常需要机器来简单地帮助您对人类能力和感觉的细微差别,例如他们进行实践和学习的机会,自我改善感和自尊心。解决这一差距时,我们定义了一个关键而新颖的挑战智能帮助,旨在为各种残疾人的人提供积极主动而自适应的支持,并在各种任务和环境中提供动态目标。为了确定这一挑战,我们利用AI2- [32]来构建一个新的互动3D实体家庭环境,以完成智能帮助任务。我们采用了一个创新的对手建模模块,该模块对主要代理的能力和目标有细微的理解,以优化辅助代理人的帮助政策。严格的实验验证了我们的模型组件的功效,并显示了我们整体方法与已建立基线的优越性。我们的发现说明了AI所辅助机器人在改善弱势群体的福祉方面的潜力。
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。