在整个飞行过程中,飞行员需要监控许多功能,包括飞机系统状态、飞机配置、飞行路径和驾驶舱内其他飞行员的行动。因此,出错的机会非常多——尤其是在具有挑战性的飞行中,而这些机会中的许多都与旨在防止错误的两种保障措施有关:检查表和监控。发达国家航空公司运营的出色安全记录(部分)证明了飞行员正确地执行了绝大多数程序,消除了威胁并避免了错误的潜在后果。然而,维护任何高度有序的系统(飞机或整个航空运输系统)的安全就像在球上保持平衡;需要不断努力来对抗许多可能扰乱系统的力量。”2
在2023 - 24年,16个全面翻新的A380又从我们正在进行的20亿美元改造计划中推出,采用了我们最新的机舱内饰,并使流行的阿联酋航空高级经济产品可供全球更多客户使用。我们今年在敬业的阿联酋休息室投资了3000万迪拉姆,重新开放了布里斯班,杜塞尔多夫,法兰克福,汉堡,香港,约翰内斯堡,曼彻斯特和慕尼黑的八个刷新设施;并承诺在我们的网络中增加更多休息室,包括毛里求斯和卡萨布兰卡。我们在网络上恢复了签名的司机驱动器服务,并将其介绍给了雅加达的优质客户。
(1) 本指南涉及 LNG 运输船中液货舱内液体和船舶运动产生的晃动载荷。本指南适用于薄膜型 LNG 运输船在晃动载荷作用下的货物围护系统的评估程序和验收标准。 (2) 此外,本指南还适用于《钢质船舶入级规范》(在本指南中以下简称“规范”)第 13 篇第 1 节第 4 章第 6 节适用范围以外的带液货舱船舶的晃动载荷计算程序。 (3) 本指南适用于采用薄膜技术的海上 LNG 储存和再气化结构的货物围护系统的晃动载荷和结构强度评估程序。 (4) 本指南的要求应与规范的其他要求一起适用。
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。
西科斯基 S-92 提供标准的 9 人内部空间,客舱宽敞,并可加入定制功能,包括厨房、吧台、壁橱,甚至盥洗室。主动减震器和声学技术使客舱更加安静,飞行平稳,您可以放松、阅读或完成一些工作。S-92 拥有 6 英尺(1.83 米)高的天花板,提供真正的站立头部空间,让您无需弯腰即可在客舱内自由行走。宽敞、开放的空间也意味着坐下时更加舒适。为了完善完美的飞行环境,S-92 在您的脚下提供温暖的空气,在您的头顶提供新鲜、可控的空气。
小而快 飞机部件不断承受着极大的压力。表面处理可确保这些部件能够承受这些力。喷丸是最重要的工艺之一:1100 万个直径为 0.2 至 0.6 毫米的小钢球被加速并以 50 米/秒(180 公里/小时)的速度用压缩空气射向部件的目标表面。当钢球击中部件时,表面会因钢球的动能而被压缩,从而延长部件的使用寿命。这里,一名员工正在位于德国林登贝格的利勃海尔宇航公司的喷丸舱内检查起落架外壳。
加勒比地区男女士兵想加入英国陆军时经常会遭到官方的阻挠。尽管如此,仍有超过 5,000 人在英国皇家空军服役。其他人则前往美国或加拿大参军。虽然有少数英国士兵在加勒比地区服役,但殖民地主要由当地军队保卫。由于船只短缺和陆军部设置的障碍,加勒比部队直到战争的最后几个月才被大量调往欧洲。1939 年,特立尼达皇家海军志愿预备队成立,招募来自英属加勒比地区各地的士兵。经过训练后,这些士兵被调往商船、扫雷舰、排雷艇和港口船。由于这些志愿者中的大多数都在甲板下的机舱内工作,因此伤亡惨重。
型号合格证持有者颁发的设计规范通常要求考虑集中载荷,这不仅是为了解决乘客和机组人员的潜在安全问题,也是为了证明内饰部件的坚固性和性能水平。根据所考虑的情景类型和相互作用,此类载荷可能被称为“滥用载荷”或“辅助载荷”。通过结合设计考虑和符合特定要求,可以实现对乘员的保护。必须注意的是,现有的认证规范并未一致地解决集中载荷在客舱内饰认证中的应用问题。事实上,CS-25 修正案 21 明确要求仅对大型玻璃物品(参考 AMC 25.603(a))和大型显示面板(参考 AMC 25.788(b))进行滥用载荷测试。
停飞之前,其他子系统也发生了几次电气故障。全日空航空公司 (ANA) 报告称,2012 年 5 月至 12 月期间,至少有 10 块电池因电压异常或其他异常行为而不得不退回 [1]。2012 年 12 月 4 日,一架联合航空公司的航班在遇到电力问题后被迫紧急降落在新奥尔良 [2],最初被认为是机械问题,但后来发现是由于电源面板主板上的电弧引起的。2012 年 12 月 13 日,一架卡塔尔航空公司的飞机因类似的电气问题停飞 [3]。几天后,联合航空公司证实其另一架 787 飞机也出现了电气问题 [2]。另一起事件涉及 2013 年 1 月 9 日的制动诊断系统误报 [4]。虽然这些故障引发了担忧,但最终停飞还是由 2013 年 1 月相隔 10 天发生的两次灾难性电池故障引起的。2013 年 1 月 7 日,一架停飞的 787 飞机发生电池起火。一名机械师注意到辅助动力装置 (APU) 发生电源故障,随后辅助电池端子冒出火焰和烟雾。快速释放旋钮熔化阻碍了第一时间响应,但电池大火最终被扑灭。一名消防员在电池泄压时被烧伤 [5]。2013 年 1 月 16 日,全日空运营的一架 787 飞机发生电池故障。此次故障导致飞行员在日本香川县高松机场紧急降落。据全日空航空公司副总裁 Osamu Shinobe 称,“驾驶舱内发出电池警报,并在驾驶舱和客舱内检测到异味,(飞行员)决定紧急降落”[6]。日本检查人员发现辅助电池系统可能接线不当 [7],这进一步引发了人们对其他系统是否安装正确的疑问。
摘要:为实现连续机器人检测飞机油箱舱内缺陷的路径规划,提出一种基于Q学习和三段法的路径规划方法,规划出满足固有和空间结构约束要求的机器人位姿。首先,建立飞机油箱仿真模型,并对工作空间进行栅格化处理,降低计算复杂度;其次,应用Q学习算法,生成从起始点到目标点的路径,根据目标导引角和三段法得到路径上各个过渡点对应的关节变量;最后,通过逐步更新关节变量,使机器人到达目标点。进行仿真实验,结果验证了该算法的有效性和可行性。