箭头分别标记 2 、 1 (V Bias = -2.0 V / -1.2 V,I = -50 pA / -200 pA)。c、放大 282 的 ZV 光谱
摘要:在密集纳米光子器件上对范德华材料进行原型设计需要高精度单层识别,以避免块体材料污染。我们使用标准干式转移工艺中使用的聚碳酸酯的玻璃化转变温度来绘制一个原位点,以精确拾取二维材料。我们将过渡金属二硫属化物单层转移到大面积氮化硅螺旋波导和氮化硅环形谐振器上,以证明改进的干式转移方法具有高精度无污染的特性。我们改进的局部转移技术是将高质量范德华材料确定性地集成到纳米腔中的必要步骤,以便在高通量、纳米制造兼容平台上探索少光子非线性光学。
B细胞急性淋巴细胞白血病(B-ALL)的高风险亚型经常与异常激活酪氨酸激酶(TKS)有关。这些包括由BCR-ABL驱动的pH+ B-all,以及类似pH的B-all,它带有其他染色体重排和/或基因突变,这些突变激活TK信号传导。目前,酪氨酸激酶抑制剂(TKI)dasatinib被添加到化学疗法中,作为pH+ B-all的护理标准,并且在临床试验中对TKIS进行了测试,以供PH样B-all。然而,即使在针对驱动癌基因的TKI治疗的细胞中,白血病微环境中的生长因子和营养也可以支持细胞周期和存活。这些刺激在激酶MTOR上汇聚,其升高的活性与预后不良有关。在pH+和pH样B-全部的临床前模型中,mTOR抑制剂强烈增强了TKI的抗白血病效率。尽管在B-all中靶向MTOR的概念性有很强的概念基础,但在临床上测试的第一代MTOR抑制剂(Rapalogs和MTOR激酶抑制剂)尚未显示出明确的治疗窗口。这篇评论的目的是将新的治疗策略引入类似于pH的B-All的管理。我们讨论了靶向MTOR的新方法,以克服先前MTOR抑制剂类别的局限性。一种方法是应用对MTOR复合物-1(MTORC1)选择性的第三代双层抑制剂,并以间歇性给药显示临床前的效率。一种独特的非药物方法是将营养限制用于恶性B-所有细胞中的靶向信号传导和代谢依赖性。这两种新方法可以增强pH样白血病中的TKI效率并提高生存率。
由于其独特的光学和电子特性,垂直的范德华异质结构(VDWH)引起了光电应用的大量关注,例如光检测,光收获和光发射二极管。为了完全利用这些特性,了解跨VDWH的界面电荷转移(CT)和重组动力学至关重要。然而,界面能量和缺陷态对石墨烯转变金属二北核化金(GR-TMD)VDWH的界面CT和重组过程的影响仍在争论中。在这里,我们研究了具有不同化学成分(W,MO,S和SE)的GR-TMD VDWH中的界面CT动力学和可调的界面能量。We demonstrate, using ultrafast terahertz spectroscopy, that while the photo-induced electron transfer direction is universal with graphene donating electrons to TMDs, its efficiency is chalcogen-dependent: the CT efficiency of S atom-based vdWHs is 3–5 times higher than that of Se-based vdWHs thanks to the lower Schottky barrier present in S-based vdWHs.相比之下,从TMD到GR的电子反传递过程定义了电荷分离时间,它依赖金属依赖性,并由TMDS的中间隙缺陷水平支配:W过渡金属基于vDWH的电荷分离极为长,远超过1 ns,这比基于MO的VDWH远超过了PS Experation 10 s的基于MO的VDWH。与基于MO的TMD相比,这种差异可以追溯到基于W的TMD中报告的更深层次的中间隙缺陷,从而导致了从被困状态到石墨烯的后电子转移的变化能量。我们的结果阐明了界面能量学和缺陷的作用,通过在GR-TMD VDWH中定制TMD的化学组成和重组动态,这是优化光电设备的优化,尤其是在光电检测领域中。
已成功用于有效操控磁化,从而产生了最近的基于 STT 的商业化磁存储器解决方案。 [1] 自旋轨道扭矩 (SOT) 利用高自旋霍尔效应 (SHE) 材料中的平面电荷电流产生的平面外自旋电流,可以实现更节能的磁化操控,并且正在达到商业成熟度。 [2–4] 到目前为止,已经研究了各种高自旋轨道耦合 (SOC) 材料,包括重金属、拓扑绝缘体 (TI) [5–7] 以及最近的拓扑半金属 (TSM) [8–11],以最大化它们的自旋霍尔角 θ SH = | J s | / | J c |,这是它们将电荷电流密度 J c 转换为自旋电流密度 J s 的效率的量度。此外,已经研究了高 SHE 和 FM 材料层之间的界面工程,以最大化跨界面的自旋透明度 T int。 [12–19] 高效 SOT 自旋电子器件的关键挑战是最大化 SOT 效率,ξ= θ SH · T int。[20]
摘要 我们简要总结了 15 多年来对基于二维材料 (2DM) 的自旋电子学的深入研究,这些研究使我们深入了解了基本的自旋传输机制、磁隧道结和自旋轨道扭矩器件中的新功能,以及使石墨烯成为自旋活性材料的强大而前所未有的邻近效应能力。尽管基于 2DM 的功能性器件和相关异质结构的组合不断增加,但我们概述了仍然阻碍自旋电子学在自旋逻辑和非易失性存储器技术中的实际应用的关键技术挑战。最后,我们提到了当前和未来的方向,这些方向将保持基于 2DM 和范德华异质结构的超紧凑自旋电子学领域的发展势头。
当前的电力传输技术受到能源摩擦耗散引起的能量损失的困扰,并且正在搜索能够在环境压力和温度下能够在环境压力和温度下进行无摩擦能量运输的材料。激子,电子和孔的准孔子结合状态,能够具有量子冷凝。所产生的超级效应在理论上具有非隔离的能量传递,1,2可以激发新型的电子设备并刺激了巨大的创新,以实现有效的能量转移应用。此外,预计在高温下,激子的冷凝于传统的超导性。3虽然凝结是可以实现的,因为激子容易重新组合,尤其是在室温下,但通过将激素与极化子与北极子耦合3,4,并且在胆汁材料中的电子和孔的空间分离是通过实验实现的。5 - 8个双层系统为激子冷凝提供了重要的平台,这是由于电子的空间分离和层之间的空间分离,从而阻止了激子快速重组。石墨烯双层已被证明是激子冷凝的有希望的候选人,其电子状态的扭曲角度依赖于
有效的磁化控制是磁学和自旋电子学的核心问题1-8。特别是,对于具有非常规功能的自旋电子器件,对范德华 (vdW) 磁体中磁态的多功能操控的需求日益增加9-13。已经实现了通过自旋扭矩对 vdW 磁体进行磁化切换的电控制,但在没有外部磁场的情况下铁磁状态到反铁磁状态之间的电流诱导相变尚未得到证明12,14,15。在这里,我们报道了电流诱导的 vdW 铁磁体 Fe 5 GeTe 2 中的磁相变,从而产生了巨磁电阻。基于磁输运测量和相关理论分析,我们证明该转变是通过平面电流诱导的跨 vdW 间隙电压差在各层中依次发生的。 34 Fe 5 GeTe 2 中磁相的电流可调性为磁性能的电控制开辟了一条道路,扩展了我们将 vdW 磁体用于各种自旋电子器件应用的能力。36
图 1. (a) 单个 CrSBr 层晶体结构的顶视图。青色、黄色和粉色球分别代表铬、硫和溴原子。连接 Cr 原子的箭头表示第一、第二和第三邻域的 J 1 、 J 2 和 J 3 磁交换相互作用。 (b) 相同 CrSBr 结构的侧面图,显示沿 b 的自旋方向。 (ch) 计算的最大局部化 Wannier 轨道。绿色箭头表示最相关的磁性超交换通道,即 J 1 (c、f)、J 2 (d、g) 和 J 3 (e、h) 的 t 2g -eg (FM)、t 2g -t 2g (AFM) 和 eg -eg (AFM)。
摘要:宽带隙半导体,例如氧化镓 (Ga 2 O 3 ),因其在下一代高功率电子器件中的应用而备受关注。尽管单晶 Ga 2 O 3 衬底可以常规地从熔体中沿各种取向生长,但关于这些取向的影响的报道却很少。此外,由于缺乏 p 型掺杂,用 Ga 2 O 3 制造整流 pn 二极管一直很困难。在本研究中,我们通过改变以下三个因素在 β-Ga 2 O 3 上制造和优化了 2D/3D 垂直二极管:衬底平面取向、2D 材料选择和金属触点。使用高温相关测量、原子力显微镜 (AFM) 技术和技术计算机辅助设计 (TCAD) 模拟验证了我们的设备的质量。我们的研究结果表明,2D/3D β-Ga 2 O 3 垂直异质结通过基底平面取向(-201)进行优化,结合 2D WS 2 剥离层和 Ti 接触,并显示出记录的整流比(> 10 6 )同时具有导通电流密度(> 10 3 A cm -2 ),可用于功率整流器。