引用这篇文章:Rahul K. Suryawanshi,Taha Y. Taha,Maria McCavitt-Malvido,Ines Silva,Mir M. Khalid,Abdullah M. Syed,Irene P. Chen,Prachi Saldhi OR-GONZALEZ,威尼斯·塞维利塔,阿米莉亚·格里瓦,珍妮·恩格扬,诺亚·库吉玛,特雷莎·阿雷拉诺,阿利亚·巴斯萨尼奇,维多利亚·赫斯,玛丽亚·赫克斯,玛丽亚·谢克拉,劳伦·洛佩兹NA,Lee Spraggon,Charles Y. Chiu&Melanie Ott(2023)。
酿酒是古老的技术之一,只是通过复杂的生化反应将糖转化为酒精的过程。酿酒的过程涉及一系列的融合技术,该技术在酿酒厂面临许多挑战,包括由于化学和微生物学不稳定性而导致的质量不一致,有限的感官伏特(Avor avor),并且担心微观环境条件的变化。发酵是一种代谢过程,其中有机底物的化学组成在厌氧条件下通过细胞酶破碎。混合发酵涉及使用多种菌株,可以增强发酵食品的香气,克服单菌株发酵的局限性,并改善食物的植物和食物质量。混合发酵在农业食品行业,医疗保健产品和医学科学方面具有重要应用。现代的混合发酵过程显示了葡萄酒香气,豆avor和味道的增强,可通过多种微生物的协同效应来降低挥发性酸度并上调乙酸苯基乙酸苯基乙酸苯基苯基浓度。在酒精发酵中的关键微生物(例如酵母,乳酸和乙酸细菌)在酒精发酵过程中相互相互作用会影响葡萄酒的质量和鸟。极性微生物已经建立了不同的分子策略,可以在不利条件下生存。被称为极端同酶,具有盐含量,热稳定性和冷适应能力的特性。但是,酒精的理化和感觉特性对于最终用品的质量很重要。因此,当优化发酵条件时,选择微生物的正确组合是获得更好的物理化学和感觉特性的关键。的使用使用混合发酵和极端化合物可以提供显着的见解和潜在的补救解决方案来克服这些技术问题并以更可取和可持续的方式来塑造最终产品,从而挑战当前的缺点,以使更具弹性的最终产品具有一致,富有效果的产品,并且可以使许多可能的产品能够受到任何可能的影响。
1梅斯,美国农业部ARS,纽约州格林波特,纽约州11944,美国; elizabeth.ramirez@usda.gov(E.R.-M。); ediane.silva@usda.gov(E.S.); elizabeth.vuono@usda.gov(e.v.); ayushi.rai@usda.gov(a.r.); sarah.pruitt@usda.gov(S.P.); nallely.espinoza@usda.gov(N.E。); lauro.velazquez@usda.gov(L.V.-S.)2堪萨斯州立大学解剖学和生理学系,曼哈顿,肯塔基州66506,美国3美国病理学和人口医学系,密西西比州立大学,P.O。Box 6100,Starkville,MS 39762,美国4 Oak Ridge科学与教育研究所(Orise),Oak Ridge,田纳西州田纳西州37830,美国5农业研究服务,美国贝尔茨维尔,美国马里兰州贝尔茨维尔,美国马里兰州20705年; cyril.gay@usda.gov *通信:manuel.borca@usda.gov(m.v.b); douglas.gladue@usda.gov(d.p.g. );电话。 : +631-323-3131(M.V.B. ); +631-323-3035(D.P.G.)Box 6100,Starkville,MS 39762,美国4 Oak Ridge科学与教育研究所(Orise),Oak Ridge,田纳西州田纳西州37830,美国5农业研究服务,美国贝尔茨维尔,美国马里兰州贝尔茨维尔,美国马里兰州20705年; cyril.gay@usda.gov *通信:manuel.borca@usda.gov(m.v.b); douglas.gladue@usda.gov(d.p.g.);电话。: +631-323-3131(M.V.B.); +631-323-3035(D.P.G.)
微生物生产精细化学品(如有机酸)的基因表达代谢调控是后基因组代谢工程中的一个重要研究课题。特别是,转录因子 (TF) 能够在时间和空间上精确响应来自内部和外部环境的各种小分子、信号和刺激的能力对于代谢途径工程和菌株开发至关重要。作为关键组成部分,TF 用于使用合成生物学方法在体内构建许多生物传感器,可用于监测有机酸生产中细胞内代谢物的浓度,否则这些代谢物在细胞内环境中将保持“不可见”。基于 TF 的生物传感器还为快速菌株进化提供了一种高通量筛选方法。此外,TF 是重要的全局调节器,可控制有机酸生物合成途径中关键酶的表达水平,从而决定代谢网络的结果。在这里,我们回顾了 TF 识别、工程和代谢工程应用的最新进展,重点介绍了有机酸生物生产的代谢物监测和高通量菌株进化。
抽象的delftia已与淡水,污泥和土壤分离,并已成为雌性阴道中一种新型的机会性病原体。然而,仍然需要全面研究基因组特征,致病性和生物技术特性。在这项研究中,从一名具有组织学确认的宫颈上皮内肿瘤(CIN III)的43岁女性的阴道中分离出left菌菌株,然后进行全基因组测序。系统发育分析和平均核苷酸同一性(ANI)分析表明,它属于Defltia lacustris,称为D. lacustris菌株LZHVAG01。lzhvag01对β-内酰胺,大环内酯类和四环素敏感,但对林肯胺,亚硝基咪唑,氨基糖苷和氟喹啉酮表现出抗性。其基因组是单个圆形染色体,为6,740,460 bp,平均GC含量为66.59%。全基因组分析鉴定了16个与抗生素抗性相关的基因,这些基因与该菌株的抗菌敏感性谱和11个潜在的毒力基因相匹配。这些致病因素可能有助于其在阴道环境中的定殖及其适应和加速宫颈癌的进展。这项研究测序并表征了从阴道分离中分离出的delftia lacustris的整个基因组,该分泌物为研究人员和临床医生提供了对这种不常见物种的宝贵见解。
囊性纤维化(CF)患者的肺肺部容易受到铜绿假单胞菌的感染(1)。cf肺通常由形成生物膜的非粘液铜绿假单胞菌菌株定植,并且在粘液菌株过量产生藻酸盐的出现后发生慢性感染(2)。他们的生物膜对抗生素和IMUNE介质具有高度抗性,并导致肺部下降(2,3)。铜绿假单胞菌菌株是从慢性感染的成年CF患者的痰液样本中分离出来的,并在法国南特的中心医院大学中心。由于这些痰样品仅用于分离细菌,但不用于人类细胞或人类DNA,因此法国法律(2016-1537,2016年11月16日)不要求由机构伦理委员会审查和批准该研究或参与者提供书面或言语知情的同意。细菌,并使用基质辅助激光解吸离子 - 流量质量光谱法(MALDI-TOF MS [VITEK; VITEK; BIOMERIERIEUX; BIOMERIERIEUX,MARCY-LECELANCE,france)鉴定为铜绿假单胞菌。使用了每个患者的单个分离株。主要基于它们的生物膜结构和粘液表型,分离株MUC-N1,MUC-N2,MUC-P4和MUC-P5被选择构成用于测试抗体FILM化合物的应变板(M. Simon,E.Pernet,E.Pernet,E.Pernet,E.Jouault,A.Jouault,E.Portier,E.M.Boukigb,S.Boukig,S。Pinaud,C。 POC-Duclairoir,M。G。J. Feuilloley,O。Lesouhaitier,J。Caillon,S。Chevalier,A。Bazire和A. Dufour,提交出版),促使我们对其基因组进行了测序。在37°C下在液体LB培养基中生长在LB琼脂板中挑选的单个菌落接种的液体LB培养基中生长,并使用基因组基因组DNA纯化试剂盒(Fisher Fisher Scientifip,France,France)使用基因组基因组DNA纯化的基因组DNA,并使用手机的推荐并评估了双重态度(There the)。量子液计(Thermo Fisher Scientifim,美国)和1%琼脂糖凝胶电泳。 使用Illumina Nextera XT DNA库准备套件制备了测序库,按照制造商的协议。 在Miseq仪器(LMSM基因组平台,Rouen Normandy University,Evreux,France,France,France)上进行了测序,并使用Miseq Reagent Kit Kit Kit v.3(2 250 BP)进行了双指数配对末端读数。 默认参数用于所有软件,除非另有说明。 使用Trimmomatic V.0.36(4)对读数进行修剪,并使用Multiqc 检查其质量在LB琼脂板中挑选的单个菌落接种的液体LB培养基中生长,并使用基因组基因组DNA纯化试剂盒(Fisher Fisher Scientifip,France,France)使用基因组基因组DNA纯化的基因组DNA,并使用手机的推荐并评估了双重态度(There the)。量子液计(Thermo Fisher Scientifim,美国)和1%琼脂糖凝胶电泳。使用Illumina Nextera XT DNA库准备套件制备了测序库,按照制造商的协议。在Miseq仪器(LMSM基因组平台,Rouen Normandy University,Evreux,France,France,France)上进行了测序,并使用Miseq Reagent Kit Kit Kit v.3(2 250 BP)进行了双指数配对末端读数。默认参数用于所有软件,除非另有说明。使用Trimmomatic V.0.36(4)对读数进行修剪,并使用Multiqc
摘要:使用Ab始于从头算计算,研究了优化的几何形状,以及钝化边缘扶手椅抗氨基烯纳米纤维(ASBNR)的电子和传输特性。由于量子限制,当宽度分别从5 nm降低到1 nm时,带隙的大小可以从1.2 eV到2.4 eV(间接)调节。这项研究的重点是宽度为5 nm(5-ASBNR)的纳米容器,因为它的制造潜力较高,并且可以接受电子应用的带型带。应用单轴压缩和拉伸菌株会减少5-ASBNR膜的带隙。当引入超过4%以上的拉伸应力时,观察到直接带隙转变的间接转换。此外,当引入高于9%的压缩应变时,可以观察到半金属行为。通过施加压缩(拉伸)应变,孔(电子)有效质量降低,从而增加电荷载体的迁移率。研究表明,可以通过在丝带上施加拉伸或压缩应变来调节基于ASBNR的纳米电子设备的载体迁移率。关键字:2D材料,偶然,纳米式,压缩和拉伸应变,带状结构,状态密度■简介
背景:基因操作在微生物中有着广泛的应用。通过基因操作和基因编辑,可以构建多功能菌株,同时生产包括酶在内的多种工业生物材料。目的:根据纤维素酶在包括食品工业在内的各个行业中的重要性,本研究旨在通过基因操作在土著蜡状芽孢杆菌EG296菌株中生产纤维素酶。材料与方法:采用SOEing PCR扩增位于蜡状芽孢杆菌蛋白酶基因(aprE)调控上游和下游区域之间的枯草芽孢杆菌168纤维素酶基因,并通过自然转化转化为蜡状芽孢杆菌EG296。在筛选出具有纤维素酶活性的菌株后,通过同源重组从转化子的基因组中删除scoC基因(aprE基因的负转录调控因子),以同时提高纤维素酶和蛋白酶活性。结果:蜡状芽孢杆菌基因组中引入纤维素酶基因,纤维素酶活力约为0.61 u.mL -1 。通过scoC基因缺失,蛋白酶活力由230 u.mL -1 提高到363.14 u.mL -1 ,同时,在蛋白酶启动子调控下的纤维素酶活力也由0.61 u.mL -1 提高到0.78 u.mL -1 。蜡状芽孢杆菌表达的纤维素酶和蛋白酶的不稳定性指数分别为26.16和20.18,远低于40的阈值,因此两种酶均比较稳定。结论:获得了1株能够生产和分泌两种重要工业胞外酶(纤维素酶和蛋白酶)的基因工程菌株,且后续纯化工艺简单。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年3月24日发布。 https://doi.org/10.1101/2024.03.24.586472 doi:Biorxiv Preprint
抽象金黄色葡萄球菌是一种主要的病原体,导致奶牛内疗法内感染和乳腺炎。S.金黄色金黄色基因型(GT)的扩散和持续存在的能力可能很大。虽然毒力基因的关联与流行病学行为的关联尚不清楚,但已经假定了分泌蛋白的作用。我们表征了六个属于两个基因型的金黄色葡萄球菌菌株的分泌组,该基因型具有相反的Herd患病率,GTB(高)和GTS(低)(低),对应于序列类型(ST)8和398,这是通过高分辨率串联串联质谱和具有蛋白质组发现者的差异分析的。可通过具有标识符PXD029571的ProteOmeXchange获得数据。在720个已识别的蛋白质中,有98个在GTB/ST8中是独特或更丰富的GTS/ST398。GTB/ST8释放了更多的免疫球蛋白结合蛋白,补体和抗菌肽抑制剂,肠毒素和代谢酶,而GTS/ST398则释放了更多的白细胞素,血素,脂肪酶,脂肪酶和肽酶。此外,GTB/ST8释放了Von Willebrand因子蛋白,葡萄球菌酶和结块因子B,而GTS则释放了葡萄球菌凝结酶和结块。因此,GTB/ST8的秘密表明,与其流行病学特征一致的细胞损伤和炎症的免疫逃避和慢性倾向以及GTS/ST398的秘密群。因此,GTS/ST398分泌物在体外对牛PBMC的细胞毒性明显更大。我们的发现证实了细胞外毒力因子在金黄色葡萄球菌发病机理中的关键作用,并强调了研究其差异释放的必要性,从而增加了基因运输量,以更好地理解金黄色葡萄球菌基因型与阶段的生物学行为的关系,并可能是疾病的严重性。