在一项大型随机活性对照研究中,托法替尼(另一种 JAK 抑制剂)用于治疗 50 岁及以上且至少存在一种心血管风险因素的类风湿性关节炎患者,结果发现与 TNF 抑制剂相比,托法替尼剂量依赖性地导致静脉血栓栓塞事件 (VTE)(包括深静脉血栓形成 (DVT) 和肺栓塞 (PE))发生率较高。接受 OMJJARA 治疗的患者中已报告出现 DVT 和 PE 事件。但尚未确定两者之间的因果关系。在临床试验中接受 OMJJARA 治疗的骨髓纤维化患者中,OMJJARA 治疗患者和对照治疗患者的血栓栓塞事件发生率相似。在开始或继续使用 OMJJARA 治疗之前,应考虑个体患者的益处和风险,特别是对于有心血管风险因素的患者(请参阅第 4.4 节特殊警告和使用注意事项,主要不良心血管事件 (MACE))。有血栓症状的患者应及时评估并进行适当治疗。
由于具有 CMOS 兼容性和可扩展性的特点,HfO 2 基铁电体是下一代存储器件的有希望的候选材料。然而,它们的商业化受到可靠性问题的极大阻碍,疲劳是一个主要障碍。我们报告了界面设计的 Hf 0.5 Zr 0.5 O 2 基异质结构的无疲劳行为。构建了一个相干的 CeO 2- x /Hf 0.5 Zr 0.5 O 2 异质界面,其中 CeO 2- x 充当“氧海绵”,能够可逆地接受和释放氧空位。这种设计有效地缓解了电极-铁电界面处的缺陷聚集,从而改善了开关特性。此外,设计了一种对称电容器架构来最大限度地减少印记,从而抑制了循环引起的定向缺陷漂移。这种双管齐下的技术可以减轻氧伏安法产生的化学/能量波动,抑制顺电相的形成和极化退化。该设计确保 Hf 0.5 Zr 0.5 O 2 基电容器具有超过 10 11 次开关循环的无疲劳特性和超过 10 12 次循环的耐久寿命,以及出色的温度稳定性和保持性。这些发现为开发超稳定的氧化铪基铁电器件铺平了道路。
1. 药品名称 Tilobrastil 60 mg,薄膜包衣片 Tilobrastil 90 mg,薄膜包衣片 2. 定性和定量组成 [60 mg] 每片薄膜包衣片含 60 mg 替格瑞洛。 [90 mg] 每片薄膜包衣片含 90 mg 替格瑞洛。 有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 薄膜包衣片。 [60 mg] 圆形、双凸、粉红色片剂,一面标有“60”,另一面为光滑,直径为 8.6 mm ± 5 %。 [90 mg] 圆形、双凸、黄色片剂,一面标有“90”,另一面为光滑,直径为 9.6 mm ± 5 %。 4. 临床特点 4.1 治疗适应症 [国内完整名称]与乙酰水杨酸(ASA)联合使用,用于预防患有动脉粥样硬化血栓形成事件的成年患者
摘要:光伏 (PV) 技术正在迅速进入能源市场,为社会的可持续发展提供清洁能源,减少空气污染。为了加速光伏太阳能的利用,未来应不断提高转换效率并降低制造成本。这可以通过在新型器件结构中使用低成本生长技术生产的先进薄膜材料来实现。这项工作旨在一站式提供薄膜光伏太阳能材料的最新研究成果。本期特刊介绍了使用低成本技术生长和表征几种光伏太阳能材料,并在优化后用于新器件结构。因此,这将为该领域的专家提供有用的参考和新的见解。希望这个共同的平台将成为进一步发展这一极其重要领域的垫脚石。
图1. 结构示意图及在正入射光下模拟得到的吸收光谱。(a)红外探测器的探测机理。目标的红外辐射透过大气后被红外探测器捕获。(b)双层超薄膜示意图及GST在不同状态之间的转变机制。当温度超过结晶温度𝑇𝑇 𝑐𝑐时,GST会逐渐由非晶态转变为结晶态,而一旦温度超过熔点𝑇𝑇 𝑚𝑚后,经过快速退火,GST又可以变回非晶态。(c)光谱椭偏仪测得的红外波段不同状态下GST的相对介电常数。(d)双相态超薄膜对正入射光的吸收光谱及大气透过光谱。
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
(gimpa)。电子邮件:wdzisah@gimpa.edu.gh orcid:0000-0002-8888-3615摘要这项研究研究了Techiman South区的卫生和固体废物的社会和行为改变沟通。卫生和固体废物管理提出了巨大的挑战,影响了生活的各个方面。尽管有广泛的研究和干预措施来帮助解决这一威胁,但由于城市和城市周边地区的人们继续从事使此事复杂化的行为,因此几乎没有成功。该研究采用了混合方法。通过调查问卷,半结构化访谈和观察来收集数据。使用目的抽样和简单的随机抽样技术来选择参与者。调查结果表明,废物管理中的社区动员工作不足,这主要是由于社区参与此类努力。卫生和废物管理政策中的较弱的沟通计划进一步加剧了这个问题,强调了增强社区参与的需求。该研究得出的结论是,研究领域的沟通和意识工作存在差距。建议该地区的职责责任优先考虑社区动员和参与工作,例如定期清理练习,并让社区领导者计划和传播有关Techiman South地区卫生和固体废物管理的信息。
科罗拉多大学博尔德分校 (CU Boulder) 和加州大学洛杉矶分校 (UCLA) 的研究人员合作发现了一种使用钍薄膜制造核钟的新方法。新闻稿称,这项技术飞跃相当于在电子产品中使用半导体和集成电路,将允许制造放射性降低 1000 倍且成本更低的核钟。
这项研究探索了铝掺杂对ZnO薄膜光学和电气性能的影响,以及它们的气感应能力,特别是对血清的响应。薄膜,然后在500°C下退火,其掺杂浓度变化(0%,0.5%,1%,1%,1.5%,2%和2.5%)。结果表明,较高的Al掺杂提高了透射率,这可能是由于结晶度增强和爆发蛋白 - 莫斯效应所致,而2.5%的Al掺杂ZnO表现出最高的透射率约为85%。折射率和灭绝系数分析表明,在较高的掺杂水平下,光吸收和散射降低,反映了膜质量的提高。介电常数的实际和虚部也随掺杂而变化,掺杂的ZnO为0.5%,显示了最高的实际部分,表明更好的介电性能。Al掺杂的ZnO膜的光条间隙随着AL浓度的增加而降低,与先前的研究一致,表明电导率的潜在改善。电性能,尤其是I-V特性,表明较高的Al掺杂降低了电导率,这可能是由于电荷载体散射增加所致。气体传感实验表明,2%掺杂的ZnO对血清表现出更高的敏感性,而耐药性随时间和血清体积而变化,突出了ZnO膜及其环境之间的动态相互作用。该研究的发现表明,Al掺杂增强了ZnO薄膜的光学和传感特性,最佳的掺杂浓度约为2%,以最大程度的灵敏度。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。