您需要多少蚀刻剂以及该过程需要多长时间取决于许多因素:PCB 的大小、板上的铜量(面积和厚度)。稍热的蚀刻剂会比冷溶液反应更快,但我们喜欢使用室温蚀刻剂所带来的轻松和控制。每隔几分钟定期搅拌溶液,以确保电路板与新鲜的蚀刻剂接触。过一会儿,您将能够看到反应已经开始。蚀刻剂溶液将充满深色颗粒,铜将开始消失。将 PCB 从溶液中取出几秒钟后,将显示新蚀刻的斑点。在去除大约 50-75% 的铜后,轻轻搅拌溶液(切勿使用金属)并摇晃容器,并留意电路板的状态。该过程似乎在最后阶段加速;这只是一种印象,但它可能会让您感到惊讶并导致过度蚀刻。将电路板在溶液中放置时间过长会导致蚀刻剂从下方侵蚀信号线,从而可能导致线迹断裂。
钼和金双金属在微电子中用作互连导体。为了对双金属进行光刻蚀,首先用一种新的金蚀刻剂蚀刻金层,该蚀刻剂是由碘和碘化鎓在乙醇和水的混合物中的溶液组成。在金蚀刻过程中没有观察到钼层的溶解,因为蚀刻剂不会侵蚀钼。
随着芯片结构系统的功率需求不断增长,由于其低功率泄漏,超薄体越来越重要。硅启动器(SOI)技术用于制造此类超薄平台。但是,当代的SOI过程和晶圆本身是复杂而又是典型的。在这项研究中,我们开发了一种简单的SOI制造工艺,可以使用商业实施的减少压力化学物质沉积技术在散装硅晶片的任何所需的局部实施。通过硅的选择性外延生长制造了局部SOI,它也可以在用1μm宽的硅种子区和蚀刻剂的蚀刻剂侧面横向生长,尺寸为20×100μm。局部SOI通过化学机械抛光处理至100 nm或更少的厚度,表现出高度结晶状态,这是由横截面成像和衍射模式分析,表面粗糙度分析和广泛的表型分析所确定的。局部SOI在优化的工艺条件下,表现出0.237 nm的表面粗糙度,并保持了与硅晶片相同的完美(100)晶体平面。我们在当前的本地SOI上成功制造了可重新配置的晶体管,这意味着当代硅电子可以在其自己的平台上利用SOI设备。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
摘要:为实现更薄的微电子封装,生产所需厚度的新型半导体硅片不仅需要高成本和能源,而且还会造成环境污染问题。然而,这一问题可以通过使用一步化学蚀刻来生产所需厚度的硅芯片以进行适当的封装,从而简单地解决。在本研究中,使用各向同性的湿化学蚀刻法,通过改变HF蚀刻剂浓度来研究蚀刻时间对HF/HNO 3 /CH 3 COOH混合溶液中的Si晶片的影响。研究的蚀刻时间为5分钟至30分钟,HF蚀刻剂浓度在(20-24)wt%范围内。从结果可以看出,随着蚀刻时间的延长,重量损失和蚀刻深度的变化单调增加。然后根据重量损失和蚀刻深度随时间的变化来确定蚀刻速率。结果表明,Si晶片的蚀刻速率随时间降低,在较高的HF浓度下增大。在光学显微镜下观察到蚀刻后Si晶片的表面变得光滑抛光。 X 射线衍射图表明,蚀刻硅的晶体峰强度高于纯硅,随着 HF 浓度的增加,与 Si 相关的峰略微向 2θ 方向移动。目前的发现表明,化学蚀刻硅晶片的所需厚度可以潜在地装入微电子设备制造的更薄的封装中,从而减少能源和成本浪费,实现未来的可持续发展。
蚀刻 蚀刻凝胶 蚀刻剂 15 蚀刻剂 15 8 蚀刻凝胶 S 蚀刻凝胶 S 8 粘接 光固化粘接 边缘粘接 边缘粘接 8 ART 粘接 ART 粘接 8 单层粘接 单层 8 单层自蚀刻粘接 单层 9 单层 7.0 单层 9 化学固化粘接 ParaPost ® 粘合剂调节剂 ParaPost ® 8 ParaBond ® ParaBond ® 8 填充材料 光固化复合材料 MIRIS ® 2 MIRIS ® 10 SYNERGY ® D6 SYNERGY ® 13 SYNERGY ® D6 Flow SYNERGY ® 14 SYNERGY ® Nano Formula SYNERGY ® 15 汞合金 Oralloy Magicap S Oralloy 21 固化灯 Coltolux LED Coltolux 17 Coltolux 75 Coltolux 17 临时修复 洞型 Coltosol ® F Coltosol ® 18 Duo TEMP™ Duo TEMP™ 18 牙冠和牙桥 Cool Temp ® Natural Cool Temp ® 18 TempoSIL ® 2 TempoSIL ® 2 19 Snap ROEKO 20 配件 器械 复合器械 20 辅助材料 基质 ROEKO 20 机械固定 Pins Max ® Pin Max ® 21 TMS LINK ® TMS LINK ® 21 TMS LINK PLUS ® TMS LINK ® 21 Kodex ® 钻 Kodex ® 23 TMS ® TMS ® 24 水泥 ParaPost ® ParaCore ® ParaPost ® 56 ParaCem ® Universal DC ParaCem ® 57 ParaPost ® 水泥 ParaPost ® 57 Duo Cement Plus Duo水泥 57
摘要:TMAH 是一种季铵盐,由甲基化氮分子组成,在电子工业中广泛用作显影剂和硅蚀刻剂。这种物质有毒,摄入后会致命。它还会导致皮肤灼伤、眼部损伤和器官损伤。此外,TMAH 对水生系统具有长期毒性。尽管已知其毒性,但欧盟法规目前并未规定废水的排放限值(即排放浓度)。当前的情况需要研究含 TMAH 的工业废水处理工艺。这项工作旨在介绍电子和半导体行业 TMAH 废液降解处理工艺的成功案例。研究以中试规模进行,并证明了工艺可行性(技术和经济性)及其环境可持续性。该工艺处理三种高浓度有毒物质废液,被认为是创新的。