图 2 MSNR 模型训练和评估示意图。 (a) MSNR 旨在通过考虑边缘和社区级别的信息来研究大脑连接-表型关系。该模型采用 n × p × p 矩阵,其中 n 是受试者的数量,p 是每个对称邻接矩阵中的节点数。节点属于 K 个社区,是先验确定的。 (b) 从总样本 (n = 1,015) 中随机选择 20% (n = 202) 作为剩余验证数据。我们进行了五倍交叉验证来选择调整参数 λ 1 和 λ 2 的值。这两个参数分别表示平均连接矩阵 (Θ) 和社区级连接-协变量关系矩阵 (Γ 1,...,Γ q) 的 l 1 范数的核范数惩罚。整个过程重复了五次。 (c)然后使用(b)中确定的调整参数对其余 80% 的总数据集(n = 813)进行模型训练。然后计算样本外预测误差,作为验证集上已知和估计连接矩阵之间差异的 Frobenius 范数。(d)我们还通过置换程序评估了最终模型,其中我们破坏了大脑连接和协变量数据之间的联系,以生成样本外预测误差的零分布
摘要:强制游泳压力测试(FST)广泛用于筛查具有潜在抗抑郁活性的药理或非药理策略。最近的数据表明,可以使用连续五天重复进行FST(即5D-RFSS),可用于在小鼠中产生强大的抑郁型表型。然而,最近对5D-RFS的面部,构造和预测有效性受到了挑战。这项研究利用了最近发现的优势,表明当动物在黑暗阶段发生压力时,增加了小鼠对焦虑的脆弱性,以提供对该模型相关性的新见解。我们的结果表明,相对于对照非压力动物(假),在5D-RFSS小鼠中固定的时间逐渐增加。三个星期后,我们注意到注射了车辆化合物(VER)的5D-RFSS小鼠在FST中仍然表现出很高的固定性,而这种行为被抗抑郁药阿米替林(AMI)逆转。然而,5D-RFSS/VER和5D-RFSS小鼠/AMI小鼠在开放式场中表现出正常的表现,新颖性抑制了进食和尾悬架测试。尽管缺乏普遍的行为效果,但表征下丘脑 - 垂体 - 肾上腺(HPA)轴反应性的不同参数的损害在5D-RFSS小鼠/vER中证明了5DD-RFSS小鼠/AMI中的反应性。尽管HPA轴异常,但相对于对照组,中央血清素能系统的活性仍未受到5D-RFSS小鼠的影响。有必要进行进一步的实验,以使该模型适合对抑郁症进行建模,从而重新确定其翻译适用性。从我们的结果中,建议学习的固定性不会复制在其他慢性抑郁模型中观察到的广泛抑郁症状,例如无法预测的慢性轻度压力(UCMS)模型,慢性社会失败压力(CSDS)模型或慢性皮质酮(Cort)模型(CORT)暴露,但其在HPA AxiS上的影响。
a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
定量分析人类行为对于客观描述神经系统表型、早期发现神经退行性疾病以及开发更敏感的疾病进展测量方法以支持临床试验和将新疗法转化为临床实践至关重要。复杂的计算建模可以支持这些目标,但需要大量信息丰富的数据集。这项工作引入了 Neurobooth,这是一个可定制的平台,用于时间同步的多模态人类行为捕获。在两年的时间里,集成到临床环境中的 Neurobooth 实施促进了从 470 名个人(82 名对照者和 388 名患有神经系统疾病的人)的多个行为领域收集数据,这些个人参加了总共 782 次会议。多模态时间序列数据的可视化表明,在一系列疾病中都存在丰富的表型体征。这些数据和开源平台为增进我们对神经系统疾病的理解和促进治疗方法的发展提供了潜力,并且可能是研究人类行为的相关领域的宝贵资源。
此预印本的版权所有者于 2025 年 2 月 7 日发布此版本。;https://doi.org/10.1101/2025.02.06.25321790 doi: medRxiv preprint
通过光学显微镜观察 8 名恶性肿瘤患者和 8 名健康对照者的外周血淋巴细胞的中期,检测了自发性染色体脆性。在受试患者中,与对照组相比,自发性染色体脆性的频率明显更高,尤其是在着丝粒染色体区域。特别令人感兴趣的是涉及神经节苷脂、三肽谷胱甘肽 (GSH) 的还原形式和/或肿瘤抑制蛋白 HACE1 的相互作用。在实验室培养的小鼠胚胎 3T3 成纤维细胞、小鼠恶性骨髓瘤细胞以及两种细胞类型的混合培养物的实验体外模型提取物中神经节苷脂和抗神经节苷脂抗体的平均滴度之前,先将每个提取物通过 GSH-琼脂糖柱,以“选择”所述样本中对 GSH 具有亲和力的分子。此外,还测试了肿瘤抑制基因 HACE-1 在小鼠胚胎干细胞 (mESC) 和恶性人类宫颈癌 HeLa 细胞基因组中的存在和表达,这两种细胞都含有该基因的额外拷贝,通过用含有肿瘤抑制基因拷贝的适当重组 DNA 载体转染插入。开发的实验体外模型显示了特定的分子间相互作用,可以阻止疾病的发展。此外,还展示了非淋巴细胞类型产生抗体/免疫球蛋白的可能性。因为以这种方式产生的抗体位于专门的淋巴组织和器官中的生发中心之外,所以通过小离子和分子(如神经节苷脂)控制它们的功能非常重要。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以在2025年2月6日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.05.25321729 doi:medrxiv preprint
Index_drug Codrug rs ID CHR p 值 MAF 最接近的基因变体 ann. A mag.氢氧化物 N 吗啡 rs117944645 8 2,98E-08 0,010 LRRCC1 intronic A 泮托拉唑 A 甲氧氯普胺 rs147504573 10 1,09E-08 0,019 KCNMA1 intronic A 泮托拉唑 C 呋塞米 rs116091351 1 1,23E-08 0,017 TMEM81 intronic A 泮托拉唑 J 环丙沙星 rs117452099 6 2,40E-08 0,019 THBS2 基因间 A 乳果糖 A 匹可硫酸钠 rs12736144 1 1,48E-08 0,034 AJAP1 intronic A 乳果糖 C 呋塞米 rs1871838 8 5,43E-08 0,056 DLC1 基因间 A 硫胺素 J 甲硝唑 rs114942430 5 2,85E-08 0,053 CDH6 基因间 A 硫胺素 N 氯氮卓 rs186107005 12 4,75E-08 0,015 ALG10 基因间 A 钾 chl. A 镁 rs56255127 11 2,06E-08 0,135 NTM 内含子 A 钾 chl. C 呋塞米 rs146985296 6 3,85E-08 0,015 MCM3 基因间 A 钾 chl. J 环丙沙星 rs116132368 4 1,50E-08 0,013 UGT2A3 基因间 A 钾 chl. J 甲硝唑 rs4757645 11 4,85E-08 0,622 LDHA 基因间 A 钾 chl. J 甲硝唑 rs79970770 9 1,10E-08 0,016 ASTN2 内含子 A 钾 chl. N 氯氮卓 rs573836037 16 1,09E-08 0,014 HNRNPA1L3 基因间 B 华法林 C 呋塞米 NA 6 8,19E-09 0,017 NA 基因间 B 替扎肝素 A 钾 chl. rs2511771 11 7,29E-09 0,661 NTM 基因间 B 氯吡格雷 B 乙酰柳.酸 rs149039924 12 1,04E-08 0,011 CEP83 intronic B 氯吡格雷 C 美托洛尔 rs312802 17 5,27E-09 0,149 SEPTIN9 intronic B 氯吡格雷 C 辛伐他汀 rs28636409 4 2,20E-08 0,014 THEGL intronic B 乙酰水杨酸 C 美托洛尔 rs77925157 16 1,72E-08 0,011 GOT2 基因间 B 乙酰水杨酸 C 美托洛尔 rs758010917 19 3,85E-08 0,059 ZNF331 intronic C 地高辛 A 钾氯。 rs145706366 5 4,13E-08 0,022 CDH18 内含子 C 胺碘酮 A 泮托拉唑 rs146704861 8 1,38E-08 0,011 MFHAS1 基因间 C 胺碘酮 A 泮托拉唑 rs370304464 9 4,01E-08 0,159 TLE4 基因间 C 胺碘酮 B 乙酰水杨酸 rs185619351 1 5,36E-08 0,012 IGSF3 内含子
癌症干细胞(CSC)是肿瘤质量中的一个小子集,这显着促进了癌症的进展,通过各种致癌途径的失调,促进肿瘤生长,化学抗性和转移形成。CSC的侵略性行为由几种细胞内信号通路,例如Wnt,NF-KAPPA-B,Notch,HydgeHog,Jak-Stat,Pi3K/Akt1/MTOR,TGF/TGF/TGF/SMAD,PPAR,PPAR,PPAR和MAPK激酶,以及诸如外胞外小叶等信号,以及诸如外胞外叶子,以及分类的cy虫,以及分类的分解。趋化因子,促血管生成和生长因子,最终调节CSC表型。在这种情况下,肿瘤微环境(TME)是建立允许性肿瘤生态位的关键参与者,其中CSC与各种免疫细胞进行复杂的通信。“致癌”免疫细胞主要由B和T淋巴细胞,NK细胞和树突状细胞表示。在免疫细胞中,巨噬细胞由于其不同的亚群而表现出更塑性和适应性的表型,其特征在于免疫抑制和炎症表型。Speci fi cally, tumor-associated macrophages (TAMs) create an immunosuppressive milieu through the production of a plethora of paracrine factors (IL-6, IL-12, TNF-alpha, TGF-beta, CCL1, CCL18) promoting the acquisition by CSCs of a stem-like, invasive and metastatic phenotype.tams已经证明了通过直接配体/受体(例如CD90/CD11b,Lsectin/btn3a3,epha4/ephrin)相互作用与CSC进行通信的能力。另一方面,CSC表现出其影响免疫细胞的能力,创造了有利的微环境,以实现癌症的进展。如今,有趣的是,CSC和TME的双向影响会导致表观遗传重编程,从而维持恶性转化。