1.2关于地球观测的第四次研究公告的概述…4 2。研究类别……………………………………………………………………………………8 2.1。地球观察研究计划…………………………………………8 2.2。JAXA卫星项目研究………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… GCOM-C…………………………………………………………………………………………………………………… Moli…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………Instruction for responding to this EO-RA………………………………………68 3.1 Qualifications……………………………………………………………………68 3.2 Research agreement conclusion…………………………………………………68 3.3 Research period…………………………………………………………………68 3.4 Resource…………………………………………………………………………68 3.5 Obligations………………………………………………………………………69 3.6选择……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………” postponement…………………………………………………70 3.10 Important dates for selection of proposals………………………………………70 3.11 Proposal submission and contact point…………………………………………70 4.提案内容的指示……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………内容………………………………………………………………………………………………………………………Description of research agreement………………………………………………75 5.1 Contractual procedure…………………………………………………………75 5.2 Research agreement summary…………………………………………………75
AAC Clyde Space 率先开发的解决方案是为了响应 CivTech 9 的挑战。CivTech 是苏格兰政府的旗舰创新计划,它将公共部门的专业知识和私营部门的创新结合在一起,以解决实际问题并开发新产品。目前签订的预商用协议将侧重于对图像数据进行分析(包括自动化和集成),并将其纳入苏格兰林业的地理空间信息系统 (GIS) 和运营中。此外,根据这项预商用协议,Cyclops 星座预计将于 2025 年开始向客户提供数据。
正是在这种背景下,IN-SPACe 发布的印度《印度太空经济十年愿景与战略》报告预测,2033 年对地观测的市场潜力将达到 80 亿美元,增长率为 28%。1 印度严重依赖对地观测数据来满足各种关键需求,包括天气监测、气候变化监测、农业部门应用、城市规划、交通、基础设施以及最重要的国家安全。建立主权能力以确保能够获得对地观测数据对于印度的国家利益至关重要。这包括增强气候监测、灾害管理、农业规划和国防行动的能力。除此之外,基础设施、能源和采矿、金融和保险等其他各个行业都可以从基于对地观测数据的应用中受益匪浅。在未来十年内,在国家内部发展专业知识以满足这些需求至关重要。在这方面,本思想领导力详细介绍了基于 EO 的应用的关键价值主张。它还深入探讨了 EO 平台如何支持数据的获取、处理和分析。建立这样的平台将实现下游能力,同时也支持印度的主权需求,加强国际关系,并促进社会经济发展。
EREEFS信息系统整合了流体动力,波浪,沉积物,流域和生物地球化学(BGC)模型,以探索大屏障礁(GBR)内海洋循环和海洋生态系统动力学。向GBR海洋环境的土地投入是一个关键过程,可驱动海洋循环,水质和整体礁石健康。集水区模型具有集成的围场模型,该模型将营养素,沉积物和淡水添加到GBR沿海水域中。,我们通过将其与包括8,000多个现场样本观测值的原位观察结果进行了比较,评估了在11年(2011-2022)中进行的Ereefs Marine Biogeepical模型的最新后广播版本。通过与观察数据(MMP,AIMS,JCU,IMOS,GIDARJIL)进行比较,我们评估了EREEFS模型复制GBR中关键水质参数的能力。我们展示了模型模拟的优势和局限性,并在何处提供了对模型和观察性改进的见解。分析强调设计操作,建模和观察性研究的重要性和好处,以更好地了解海洋生态系统。我们证明了模型验证在指导信任中的使用,以建模为当前和未来的管理策略(例如战略管理框架(SMF))和GBR水质报告卡。
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
我们还支持 ESA 有效载荷数据地面段 (PDGS),它处理和传播来自 ESA 地球探测器卫星的数据,并为 NASA 任务提供接口。凭借在复杂地理空间数据处理系统方面的经验,我们构建了基于云的数据处理和开发平台,并支持英国气象局提供用于制作天气预报的工具和系统。我们的解决方案用于多个市场,包括政府、国防、林业、采矿和电信。
森林吸收了大量的碳,在全球气候系统中发挥着至关重要的作用。因此,量化森林生物量和碳通量对于碳预算核算、碳通量监测以及了解森林生态系统对气候变化的反应至关重要。估算森林生物量/碳储量不仅有助于减少毁林和森林退化造成的排放 (REDD) 计划,也有助于森林的可持续管理。遥感数据与森林清单相结合已成为一种有效的方法,可以结合涡流协方差观测来估算森林生物量/碳储量和通量研究。在联合国 REDD+ 和可持续发展目标 (SDG) 目标 15.2 的背景下,空间技术在测绘和监测应用中的作用得到了明确强调。随着新传感器的发展,空间、光谱、辐射和时间分辨率的提高,EO 数据可以在森林生物量/碳和碳通量的测绘和监测中发挥重要作用。还需要更好的数据集成方法来准确、空间明确地估计森林生态系统的碳动态。
摘要:我们评估了一组模型中的中尺度搅拌的表示,以根据北大西洋示踪剂释放实验(Natre)收集的微结构数据得出的估计值。我们从法拉利和波尔津的大约温度差异预算框架中大量汲取灵感。该框架假设温度差异的两个来源远离边界:首先,大规模平均垂直梯度通过小规模的湍流垂直搅拌;其次,中尺度涡流对大规模平均层梯度的横向搅拌。温度差异被转化,并以微观结构观测值估算的速率x进行平均转移量表以在微观尺度上进行最终耗散。海洋模型通过垂直混合参数化代表这些途径,以及沿等副侧面混合参数化(如果需要的话)。我们评估后者作为Natre数据集的残差的差异速率,并在一组模型模拟中与参数化表示形式进行比较。我们发现,由于在平行的海洋程序2(POP2)1/10 8模拟中,横向搅拌引起的变量产生很好地同意,并且在估计的误差栏内,并根据NATRE估计推断出来。在其他扩散率估计值中不存在这种元素值,这表明在解释ECCOV4R4调整后的侧向扩散率时需要补偿错误和谨慎。pop2 1 8模拟以及估计海洋版本4版本4(ECCOV4R4)模拟的循环和气候模拟似乎通过应用横向扩散率来消散数量级过大的差异,与NATRE估计相比,尤其是低于1250 m。 ECCOV4R4-调整后的横向扩散率升高,而微观结构表明X升高来自中尺度搅拌。
南部公司服务(SOCO)是南部公司平衡机构和东南部电力管理局(SEPA)平衡机构的RC,以及以下传输所有者:乔治亚州传输公司(GTC),乔治亚州传输公司(GTC),乔治亚市市政电动机,乔治亚州乔治市(MEA),南方电力公司(SEPC),APA(SEPA),SEPA,SEPA,SEPA,SEPA,SEPA,SEPA) Power(MPC)和佐治亚力量(GPC)。东南RC区域由NERC注册表中列出的平衡当局的计量界限内的传输和发电设施组成,并在东南可靠性协调员可靠性计划中引用。东南RC已与邻近的RC达成协议,以促进满足可靠性协调员的NERC要求所需的协调和通信。