摘要 - 全球超过230万人每年患有与工作有关的伤害或疾病,每天导致6,000多人死亡。提供一个不清楚的工作环境和未能佩戴适当的个人防护设备已被确定为工作场所事故的重要贡献者,这使得雇主必须将工作场所安全性优先级作为当务之急。提供适当的个人防护设备(PPE)并维护良好的,明确的(不安全)的工作环境可以帮助防止不便的工作场所事件。此外,它促进了安全的工作环境,减少了威胁生命的事件的可能性,并增强了整体业务和经济状况。因此,本文通过实施计算机视觉技术来检测工人所穿的适当PPE,并确保一个安全的工作空间来降低人身伤害的风险,从而提出了安全,智能的制造。通过利用计算机视觉技术,我们可以识别PPE,例如手套,头盔和工作叉车,由工人在制造环境中使用。对于两个数据集中的所有类,都使用Yolov8达到了80.6%和86%的精度。通常,考虑了两个数据集的广泛审查,包括五个性能指标。
基于无人机的系统的挑战之一是车载电池的容量有限。为了克服机载电池容量的限制,本文介绍了一种智能的决策系统,用于自动着陆和充电过程。该系统旨在充电排干电池并延长飞行持续时间。基于红外发光二极管(LED)检测和标记识别。在这项研究中精心设计和使用了一个具有二十个红外LED和八个条形码的新型着陆垫。着陆过程分为两个阶段。在第一阶段,由配备红外通滤波器的摄像机观察到LED,而在第二阶段中,两个像素摄像机观察到条形码。将无人机降落在适当的极性上,然后开始充电过程,这是一种基于OTSU阈值方法的基于层次视觉的自主着陆算法(HVALA)和高斯(LOOD)操作员的Laplacian。整个系统是通过一系列自动驾驶飞行设计和测试的。在着陆过程的最后阶段获得的实验结果证实了系统的可行性和鲁棒性,在该系统平均观察到4.4厘米的较小误差为4.4厘米,最大着陆时间为10秒。在本应用程序中可以接受此类错误,并导致较高的着陆成功率。
摘要。在万伦大都会地区,城市森林(UFS)在提供景观服务方面起着至关重要的作用,尤其是在巴巴卡·西里瓦吉(Babakan Siliwangi)城市森林(BSUF)内。BSUF目前正面临多重发展挑战,需要科学证据来阐明其在万隆城市景观中的作用。这项研究分析了BSUF在碳存储,碳固存和氧气产生中的功能,并制定了管理建议以提供最佳的未来收益。在14个样本图中进行了数据收集,并使用I-Tree Eco来分析景观服务并根据计划的种植预测未来的植被结构。调查结果表明,(1)BSUF具有较高的树木多样性,鉴定出3.3香农指数和41种树种; (2)它储存381吨碳,每年隔离25.17吨碳,每年产生65.07吨的氧气; (3)为了提高未来30年的景观服务价值,每年必须至少种300棵树。这些结果表明了BSUF的重要性以及树木多样性在维持UF提供的景观服务中的重要性。此外,这项研究介绍了I-Tree Eco作为进行植被分析的宝贵工具,可帮助利益相关者监视和制定改进的景观管理策略。
1视力挑战。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>1 1.1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。1 1.2视觉。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.3视力理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.4下一步是什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.5结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
摘要 - 在室内移动的同时,感知具有多个对象的三维(3D)场景对于基于视觉的移动配件至关重要,尤其是对于增强其操纵任务的尤其是。在这项工作中,我们为具有双眼视觉的自我中心机器人提供了实例分割,特征匹配和点集注册的端到端管道,并通过拟议的管道展示了机器人的抓地力。首先,我们为单视图3D语义场景分割设计了一个基于RGB图像的分割方法,并利用2D数据集中的常见对象类将3D点封装在对象实例的点云中,通过相应的深度映射。接下来,根据先前步骤中匹配的RGB图像中感兴趣的对象之间的匹配关键,提取了两个连续的点云的3D对应关系。此外,要意识到3D特征分布的空间变化,我们还根据使用内核密度估计(KDE)的估计分布(KDE)来称量每个3D点对,随后可以使稳健性具有较小的中心范围,同时求解点云之间的刚性转换。最后,我们在7-DOF双臂Baxter机器人上测试了我们提出的管道,并使用安装的Intel Realsense D435i RGB-D相机测试了我们的管道。结果表明我们的机器人可以在移动时分割感兴趣的对象,注册多个视图,并掌握目标对象。源代码可在https://github.com/mkhangg/semantic Scene感知上获得。
自然发生的集体运动是一种引人入胜的现象,其中蜂拥而至的自发和协调其运动。许多蜂群的理论模型都假定理想化,完美的感知能力,而忽略了基本的感知过程,尤其是对于依靠视觉感知的代理商而言。具体而言,许多蝗虫等许多蜂群中的生物视觉利用了单眼非镜像视觉,从而防止了距离和速度的完美获得。此外,蜂群的同伴可以在视觉上相互阻塞,从而进一步引入估计错误。在这项研究中,我们探索了使用非镜镜,单眼视觉在受限条件下出现有序集体运动的必要条件。我们提出了一种基于视觉的聚集运动模型,用于蝗虫样药:拉长形状,平行于水平平面的全向视觉传感器,缺乏立体深度感知。该模型解决了(i)距离和速度的非镜镜估计,(ii)视野中存在闭塞。我们考虑并比较代理商可能用来以视觉感知过程所需的计算复杂性为代价来解释部分视觉信息的三种策略。在各种几何环境(环形,走廊和环形领域)进行的计算机模拟实验表明,这些模型可以导致有序的或近地有序状态。同时,它们在达到顺序的速度上有所不同。此外,结果对代理的伸长敏感。在几何受限的环境中进行的实验揭示了模型之间的差异,并阐明了使用它们来控制蜂群剂时可能的权衡。这些建议用于进一步研究生物学和机器人技术的途径。
交通管制是城市规划,安全性和效率的重要组成部分。在这项研究中,我们研究了如何使用计算机愿景实现基于AI的流量控制,并将其与较旧的方法进行比较。我们研究了人工智能系统在优化交通流,改善安全性和减少拥塞的潜在好处。该研究比较了基于计算机的AI流量控制器与传统交通管理方法的性能。交通拥堵是城市中普遍存在的问题,导致时间浪费,更高的燃料使用和增加的污染。为了解决这些问题,人们对使用人工智能(AI)和计算机视觉技术进行交通管理一直引起人们的兴趣。我们研究了基于AI的交通控制系统的创建和评估,以及与现有技术相比的创建和评估。应用了一种使用对象计数概念的新方法。我们提出了一个可以使用计算机视觉和人工智能的实时项目计数数据来智能控制流量的系统。我们根据几个关键的性能指标评估了两种交通控制方法,包括行人检测和单个车道中车辆计数的准确性。与常规方法相比,AI驱动的交通控制系统表现出了值得注意的优势。它的旅行时间减少了15%,燃油消耗降低了10%,交通流量效率提高了25%。值得注意的是,AI系统还降低了30%的交通事故,强调了其显着提高道路安全性的潜力。
摘要:各种加载条件的耦合效应可能会导致偏转,定居点甚至在服务桥梁的失败。不幸的是,尽管它是最关键的负载之一,但通过桥梁监控系统目前为可持续操作,很难实时捕获行驶车辆的加载条件。要充分了解桥梁的状态,必须在动态的交通环境中获得瞬时车辆负载分布。尽管有一些可以识别超重车辆的方法,但捕获的车辆相关信息却分散且不完整,因此无法支持有效的桥梁结构性健康监测(BSHM)。本研究提出了一种基于视觉的非接触式方法,用于识别车辆负载,以实时监测桥梁结构健康。该提出的方法由四个主要步骤组成:(1)使用Yolov7为车辆建立双对象检测模型,(2)在桥面上开发一个混合坐标转换模型,(3)为移动车辆的实时轨迹监视的多对象跟踪模型,以及(4)建立级别融资模型的车辆和位置,并为车辆的负载和位置确定型号和位置。所提出的方法有效地可视化3D时空车辆载荷分布,速度低30fps。结果表明,混合坐标转换可确保车辆位置误差在1 m以内,与传统方法相比降低了5倍。轴距是通过双对象检测和转换来计算的,是车辆位置校正的主要参考。与传感器测得的速度相比,保留了车辆的轨迹和实时速度,平滑速度误差均低于5.7%。作者设想所提出的方法可以构成一种新的方法来进行实时的服务桥梁。
机器人超材料代表了一种创新的方法,用于创建合成结构,将所需的材料特征与具体的智能结合在一起,模糊了材料和机械之间的边界。受到生物皮肤功能质量的启发,将触觉智能整合到这些材料中引起了研究和实际应用的重要兴趣。这项研究介绍了具有全向适应性和出色触觉感应的软机器人超材料(SRM)设计,结合了基于视觉的运动跟踪和机器学习。研究将两种感官整合方法与最先进的运动跟踪系统和力/扭矩传感器基线进行比较:具有高框架速率的内部视觉设计和外部视觉设计的成本效果。结果表明,内部视觉SRM设计达到了98.96%的令人印象深刻的触觉精度,实现了柔软和适应性的触觉相互作用,尤其对灵活的机器人抓握有益。外部视觉设计以降低的成本进行类似的性能,并且可以适应可移植性,从而增强材料科学教育和机器人学习。这项研究显着地使用了软机器人超材料中的基于视觉运动跟踪的触觉传感,以及GitHub上的开源可用性促进了协作并进一步探索了这种创新技术(https:// github .com /github .com /bionicicdl -sustech /sustech /softrobotictongs)。