圈量子引力 (LQG) 的基本构成要素是自旋网络,它用于量化 LQG 中的物理时空。最近,利用自旋网络的基本概念提出了新的量子自旋。这一观点重新定义了量子自旋的概念,并引入了约化普朗克常数的新定义。这一观点的含义不仅限于量子引力,还可用于量子力学。利用这一观点,我们提出了对心灵时空的量化。物理时空与心灵时空之间的相似性为从科学和哲学角度研究时空提供了新概念。本文还对物理时空与心灵时空进行了比较研究。
杰拉尔德·J·图森 杰拉尔德·J·图森是佐治亚理工学院工业与系统工程学院名誉教授。他在斯坦福大学获得工业工程学士、硕士和博士学位。他的研究兴趣包括工程经济分析、资本预算和统计决策理论。他与他人合作撰写了两本大学教材,《工程经济学》和《经济决策分析》。1981 年至 1991 年,他担任《工程经济学家》编辑,是美国工程教育学会会员,并担任董事会成员。图森博士于 1977 年和 1989 年获得尤金格兰特奖,并于 1989 年因在工程经济领域的杰出贡献和服务获得惠灵顿奖。1990 年,他获得 IIE 颁发的杰出出版物奖。他是工业工程师协会会员,并担任董事会成员。
本文评估了瑞典二氧化碳排放与金融发展、经济增长、可再生能源使用、结构变化和不可再生能源使用之间的时频分析相互关系。我们使用了 1980 年至 2019 年的季度数据集。为了揭示这些相互关系,我们利用了小波工具(基于小波的格兰杰因果关系和小波相干性)。基于小波的格兰杰因果关系 (WGC) 检验解释了时间序列分析中的多个时间尺度问题。WGC 的另一个独特之处在于它能够抵抗时间序列模型中的分布假设和错误指定。此外,小波相干性估计器可以即时评估模型中相互作用指标之间的相关性和因果关系。小波相干性的结果显示,可再生能源、金融发展、经济增长、结构变化和贸易开放提高了环境质量,而非可再生能源则加剧了二氧化碳的排放。此外,WGC 还显示,所有变量都可以相互预测。基于这些发现,瑞典的政策制定者应该更加注重提高公众对可再生能源和环境保护的认识。我们相信,瑞典转向服务业主导的增长将有助于保护环境。
经过 2020 年 12 月开始的多年过程和两轮广泛的公众咨询后,B 公司认证标准的演变过程已进入后期阶段。金融服务业是一个独特而多样化的行业,它拥有独特的商业模式和方法来管理其对社会和地球的(潜在)环境和社会影响。在制定新标准的过程中,我们认识到需要为金融服务业制定量身定制的标准。最初的轨迹是在制定 B 公司的新标准之后或同时制定金融行业的独特标准。因此,目前针对 B 公司的现行标准草案并未充分考虑到该行业的细微差别,可能并不全面适用于金融服务业。
量子计算机的探索正在如火如荼地展开。在过去十年中,量子计算的前沿领域已经从探索少量子比特设备扩展到开发可行的多量子比特处理器。超导 transmon 量子比特是当今时代的主角之一。通过和谐地结合应用工程与计算机科学和物理学的基础研究,基于 transmon 的量子处理器已经成熟到令人瞩目的水平。它们的应用包括研究物质的拓扑和非平衡状态,有人认为它们已经将我们带入了量子优势时代。然而,建造一台能够解决实际相关问题的量子计算机仍然是一个巨大的挑战。随着该领域以无拘无束的热情发展,我们是否全面了解潜伏的潜在危险的问题变得越来越紧迫。特别是,需要彻底弄清楚,在拥有 O (50) 量子比特的可行量子计算机的情况下,是否会出现与多量子比特性质相关的新的和迄今为止未考虑的障碍。例如,小型设备中量子门的高精度很难在大型处理器中获得。在硬件方面,大型量子计算机提出的独特要求已经催生了量子比特设计、控制和读出的新方法。本论文介绍了一种新颖的、不太实用的多量子比特处理器视角。具体来说,我们通过将局域化和量子混沌理论中的概念应用于多 transmon 阵列,将量子工程和多体物理学领域融合在一起。从多体的角度来看,transmon 架构是相互作用和无序非线性量子振荡器的合成系统。虽然 transmon 之间的一定程度的耦合对于执行基本门操作是必不可少的,但需要与无序(量子比特频率的站点间变化)进行微妙的平衡,以防止局部注入的信息在扩展的多体状态中分散。 Transmon 研究已经建立了不同的模式来应对效率低下(由于耦合小或无序大而导致的门速度慢)和信息丢失(耦合大或无序太小)之间的困境。我们使用当代量子处理器作为蓝图,在精确对角化研究中分析了 transmon 量子计算机的小型实例。仔细研究光谱、多体波函数和量子比特-量子比特相关性以获得实验相关的参数范围,发现一些流行的 transmon 设计方案在接近不可控混沌波动的区域运行。此外,我们在经典极限中建立了混沌的出现与量子混沌特征的出现之间的密切联系。我们的概念补充了传统的少量子比特图像,该图像通常用于优化小规模的设备配置。从我们全新的视角,可以探测到超出这个局部尺度的不稳定机制。这表明,在多体定位领域开发的技术应该成为未来 transmon 处理器工程的一个组成部分。
在哈马德·本·哈利法大学组织的一场小组讨论中,有人提出了一个问题:人工智能是否真的可以创造艺术?此次活动由哈马德·本·哈利法大学科学与工程学院和人文与社会科学学院翻译与口译学院组织。活动由两场小组讨论组成,邀请了来自卡塔尔消防局驻地艺术家和 Mada 中心的主讲嘉宾。第二场小组讨论特别探讨了人工智能如何改变残疾人士的艺术体验和参与。小组通过案例研究展示了残疾人士如何利用人工智能来塑造他们对当代艺术形式的体验和概念。从而确定了人工智能可能对艺术感知和包容性带来的挑战和机遇。
随着全球气候变化的影响逐年加剧,关于太阳辐射改造(SRM)的讨论——通过提高地球对太阳光的反射率来对全球气候系统进行大规模的、人为的操控——正日益成为延缓气候变化的潜在机制。关于SRM相关技术的讨论大多集中在北半球国家,但SRM对南半球国家也具有重要意义,而且那里国家的兴趣也日益浓厚。自2019年以来,作者们一直在南半球国家直接参与SRM研究,参与了与该领域发展相关的研究、研讨会和其他活动,同时也致力于巴基斯坦气候和环境问题的科学和治理工作。本政策简报是2024年1月在巴基斯坦伊斯兰堡举办的一次培训研讨会的成果,在研讨会上,作者们就与巴基斯坦国情相关的SRM问题进行了探讨。作者们概述了SRM面临的治理挑战,并为巴基斯坦气候界成员、民间社会组织以及政策制定者和决策者提供了一个初步框架,帮助他们参与目前已在进行的SRM全球讨论。最后,作者就国家应如何考虑参与这些即将采取的气候干预措施提出了建议。
1.Arkadiusz Sitek,博士,Sano 计算医学中心,波兰克拉科夫,Nawojki 11 街,30-072 克拉科夫,波兰,a.sitek@sanoscience.org 2.Sangtae Ahn,博士,GE 研究 3.Evren Asma,博士,佳能医学研究 4.Adam Chandler,博士美国联合影像医疗全球科学合作组 5。Alvin Ihsani,博士,NVIDIA 6。Sven Prevrhal,博士,飞利浦欧洲研究中心,7。Arman Rahmim,博士,不列颠哥伦比亚大学放射学和物理学系,加拿大不列颠哥伦比亚癌症中心省级医学成像物理学家 8。Babak Saboury,医学博士,公共卫生硕士,DABR,DABNM,美国国立卫生研究院临床中心放射学和成像科学系,马里兰大学巴尔的摩分校计算机科学与电气工程系,美国马里兰州巴尔的摩,宾夕法尼亚大学医院放射学系,9。Kris Thielemans,博士,伦敦大学学院核医学研究所,英国,算法与软件咨询有限公司,英国伦敦