缺乏深度学习模型的解释性限制了在临床实践中采用此类模型。基于原型的模型可以提供固有的可解释预测,但是这些预测主要是为分类任务而设计的,尽管医学想象中有许多重要的任务是连续的回归问题。因此,在这项工作中,我们介绍了专家:专门为回归任务设计的可解释原型模型。使用原型标签的加权平均值,我们提出的模型从分离到潜在空间中的一组学习原型的样本预测。潜在空间中的距离正规化为相对于标签差异,并且可以将每个原型视为训练集中的样本。图像级距离是从斑块级距离构建的,其中两个图像的贴片使用最佳传输在结构上匹配。因此,这提供了一个基于示例的解释,并在推理时间提供了补丁级的细节。我们演示了我们提出的两个成像数据集上的脑年龄预测模型:成人MR和胎儿超声。我们的方法实现了最先进的预测性能,同时洞悉模型的推理过程。
经济增长是经济经济政策中不同生产力因素之间相互作用的函数,尤其是它可以用劳动力,生产资源(土地,资本)和技术等方面表达。 div>这项工作旨在采用一个模型来解释发展中经济体的经济增长,该模型是根据上述因素提出了这种增长的模型。然后根据资本和工作提出生产,并调整了两个模型,一种具有外在技术变化,另一种暗示了内源性的技术变化。 div>该模型是通过具有恒定替代弹性的生产函数开发的,因此它适用于发达和发展经济体,因为预计在经济体中会发展出替代经济增长的弹性。 div>研究使我们能够开发
冠状病毒继续对全球公共卫生构成重大挑战,新变种的出现需要进一步努力来控制和管理病毒。在这种情况下,接种疫苗是限制 COVID-19 大流行蔓延的重要方法。然而,疫苗犹豫是阻碍遏制冠状病毒努力的最重要和最具影响力的问题之一;它与其他对疫苗接种有直接或间接影响的因素有关,包括心理因素 ( 1 , 2 )。然而,在中东和阿拉伯国家,COVID-19 疫苗犹豫与心理健康之间的关联尚未得到充分研究。因此,确定这些心理因素以制定干预措施和促进疫苗接受度非常重要 ( 3 )。多项研究发现,在 COVID-19 大流行期间,普通公众或医护人员中精神健康障碍的患病率增加,尤其是焦虑、恐惧和抑郁 ( 1 , 4 )。这些研究结果虽然有用,但并未超越疫情爆发到疫苗接种阶段,它们探讨了精神健康障碍,但并未将其与 COVID-19 疫苗犹豫直接联系起来,而且它们解释某些人为何不愿接种疫苗的能力仍然有限 (5)。研究人员一致表示,在 COVID-19 大流行期间报告的焦虑和抑郁症状的增加可能对疫苗犹豫产生影响 (6)。然而,先前针对这一问题的研究结果存在显著差异。例如,由于社交限制而每天感到焦虑、悲伤和烦躁的参与者对疫苗犹豫不决,而仅在某些日子报告同样感受的参与者犹豫不决较少 (7)。其他研究表明,报告有焦虑或抑郁症状的人对疫苗犹豫较少 (5)。虽然焦虑、恐惧和其他心理障碍似乎是疫苗犹豫的原因之一,但心理障碍和犹豫之间的关系可能是相互的。对疫苗安全性和有效性的担忧以及可能的副作用会引发疫苗犹豫和抵制。因此,犹豫不决的个人与社会直接对抗,因此会面临更多
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
飓风 飓风是一种非常强大的风暴。它是一种气旋风暴,这意味着飓风内部呈圆形。飓风这个名字指的是始于大西洋或东太平洋的风暴。飓风在世界其他海洋中有不同的名称。例如,它们在西北太平洋被称为台风。在世界其他大部分地区,它们被称为气旋。它们的风速大多超过每小时 75 英里。风以圆形模式移动。风暴移动的中心点称为风暴眼。这些风暴通常发生在温暖的热带海洋中。它们从蒸发的海水中获取能量。飓风在陆地上移动时会减弱,因为它们依靠温暖的海洋在风暴移动时继续提供能量。陆地的表面也比海洋粗糙得多。陆地的海拔和表面变化要大得多。当风遇到陆地表面并产生摩擦时,飓风会失去动力。飓风是一种强大的风暴,通常始于大西洋或太平洋。这些风暴依靠海洋获得力量和能量,登陆后速度会减慢。
● 要使用 Legends 进行额外指导,请创建一个包含教学游戏和前后评估的自定义播放列表。 ● 要使用 Legends 进行快速形成性评估,请在播放列表中创建一个包含 5 个问题的评估。 ● 要使用 Legends 进行学生主导的体验,请创建有针对性的自由游戏播放列表。 ● 鼓励学生在家中自行玩《学习传奇:觉醒》,获得以学生为主导的体验,包括头像、战斗和任务,所有这些都围绕他们在课堂上涵盖的主题展开。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。