抽象的外观变化是在室外环境中自动驾驶汽车可视定位的最具挑战性问题之一。当前图像与地图中的地标之间的数据关联可能很困难,如果地图是在不同的环境条件下构建的。本文提出了一种解决方案,以构建和使用多条件地图,其中包含在不同条件下记录的序列(白天,夜晚,雾,雪,雨,雨,季节的变化等)。在视觉定位期间,我们利用排名函数从地图中提取最相关的信息。此排名功能旨在考虑车辆的姿势和当前环境状况。在映射阶段,通过不断向地图添加数据来涵盖所有条件,从而导致地图大小的持续增长,进而导致定位速度和性能。我们的地图管理策略是一种增量方法,旨在限制地图的大小,同时使其尽可能多样化。我们的实验是对使用我们的自主班车以及广泛使用的公共数据集收集的真实数据进行的。结果表明,我们的方法在不同的挑战性条件下显着改善了本地化性能。
在2023年12月至2024年4月的系统审查和荟萃分析的首选报告项目之后,进行了系统的审查和荟萃分析。研究数据库,例如PubMed,Embase,Cinahl和Web of Science,寻找随机对照试验(RCT),将VR模拟器与触觉反馈与BT与培训医学生的BT进行比较。七个RCT符合纳入标准,荟萃分析中包括四个RCT。主要结果是学习曲线和学习效果,而次要结果包括技能转移到手术环境。评论分析了整个研究中125名参与者的数据。的结果表明,BTS表现出优异的学习曲线,参与者比使用VR的学习速度更快。两个模拟器都显示出显着的学习效果。但是,BTS在更多的性能参数上取得了更大的改进。关于技能转移到手术环境,两组之间没有显着差异,这两种方法都有效地支持了手术技能转移。总体而言,BT具有更有效的学习曲线,并且在技能掌握方面的表现略有更好。虽然带有触觉反馈的VR提供了增强的现实主义,但它并未完全复制BT提供的自然触觉反馈。需要进一步的研究来改善VR触觉反馈及其在培训计划中的整合以增强学习成果。
摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
摘要 - 为了使人形机器人能够在共有的环境中稳健地工作,多接触运动不仅在四肢(例如手脚),而且在四肢的中间区域(例如膝盖和肘部)的中间区域进行接触。我们开发了一种实现这种全身多接触运动的方法,该运动涉及人形机器人在中间区域的接触。可变形的板状分布式触觉传感器安装在机器人四肢的表面上,以测量接触力,而无需显着改变机器人体形。较早开发的多接触运动控制器(专门用于肢体接触)扩展以处理中间区域的接触,并且机器人运动通过反馈控制稳定,不仅使用力/扭矩传感器,还可以使用分布式的触觉传感器来稳定。通过对Dynamics模拟的验证,我们表明,开发的触觉反馈提高了全身多接触运动的稳定性,以防止干扰和环境错误。此外,寿命大小的人形RHP kaleido展示了全身多接触运动,例如向前走,同时通过前臂接触支撑身体,并在坐着的姿势和大腿接触中平衡姿势。
摘要 — 触觉反馈在广泛的人机/计算机交互应用中至关重要。然而,触觉设备的高成本和低便携性/可穿戴性仍然是尚未解决的问题,严重限制了这种原本很有前途的技术的采用。电触觉界面具有更便携和更可穿戴的优势,因为它们的执行器尺寸减小,功耗和制造成本更低。电触觉反馈在人机交互和人机交互中的应用已被探索,以促进假肢、虚拟现实、机器人遥控操作、表面触觉、便携式设备和康复等应用中的基于手的交互。本文介绍了电触觉反馈的技术概述,以及其在基于手的交互中的应用的系统综述和荟萃分析。我们根据应用类型讨论了不同的电触觉系统。我们还对研究结果进行了定量讨论,以提供对最新技术的高层次概述并提出未来的方向。电触觉反馈系统显示出更高的便携性/可穿戴性,并且它们成功地呈现和/或增强了大多数触觉、引发感知过程并在许多场景中提高了性能。然而,我们发现了知识差距(例如,实施方案)、技术(例如,反复校准、电极的耐用性)和方法(例如,样本大小)缺陷,这些缺陷应在未来的研究中得到解决。
摘要。在19009年大流行中,远程学习是在空前的水平上进行的。随着锁定措施的缓解,它已成为与传统亲自学习的平行选择。尽管如此,诸如Zoom,Microsoft团队和Google Meet等基本视频会议工具的利用都具有多种限制,这些限制超出了技术方面。这些限制与人类的行为,心理学以及教学法都相关,并大大改变了学习过程中发生的相互作用。远程敏感机器人因其在增强面对面感方面的优势而被广泛使用。为了调查与在教育环境中使用远程机器人使用相关的机会,影响和风险,我们在设计学校的特定用例和基于项目的类别的特定用例中进行了实验。我们对教室的经历以及远程学生,他/她的同龄人和教授/教练之间的关系感兴趣。这项研究采用了两种类型的机器人:Kubi机器人(基于半静态平板电脑的系统)和双机器人(移动远程机器人)。主要目标是在与这些机器人的互动过程中确定远程和面对面学生的看法和经历。这项研究的结果表明,学生对库比的双重机器人的偏好显着,如他们的回馈所示。
滑动检测是要识别抓握过程中对象是否保持稳定,这可以显着增强操纵灵量。在这项研究中,我们探索了能够执行各种掌握类型的五指机器人手的滑移检测,并在整个五个手指上检测到滑移,而不是专注于单个指尖。首先,我们构建了一个在六种抓地力类型的日常生活中收集的数据集,其中包括200 k个数据点。第二,根据深重下降的原理,我们为不同的抓握类型(USDConvnet-dg)设计了一个轻巧的通用滑动检测网络,以对掌握状态进行分类(无触摸,打滑和稳定的抓紧)。通过将频率与时域特征相结合,该网络的计算时间仅为1.26 ms,平均精度在验证和测试数据集上的平均精度超过97%,表明了强大的概括功能。此外,我们在现实世界中的实时掌握力调整中验证了提出的USDConvnet-DG,表明它可以有效地提高机器人操作的稳定性和可靠性。
新媒体加速和人工智能发展的多样性和复杂性的增长不断增长,提出了有关如何最好地维持为民主生活形式服务的教育体系的基本问题。Alan Turing预测需要进行“文化搜索”“涉及整个人类社区”,这对于仅仅是算法或生物过程的进化而言并不可还原。在他的看法中,教育涉及“纪律”和“倡议”的人类生活课程的发展以及“文化”的继承。正是这些,包括人类的“措辞”,他认为随着时间的推移,他最有命运地塑造,转化和翻译代际,社交和跨文化价值观以及符号形式。关于图灵的观点,“智力”是一个植根于“常识”的“情感”概念,包括对不同类型搜索之间的多种差异的欣赏。它主要既不由模仿人类活动的能力,也不是优化理性选择或仅对仅一种搜索结果达成共识的能力。本文认为,图灵的“文化搜索”的观念1)阐明了在人工智能世界中对民主生活形式的全球教育挑战,包括算法对公众的伦理和社会问题的掌握限制,以及公众的伦理和社会问题),分析了民主构成的哲学基础,宣传了民主主义的哲学基础,并称呼民主主义的哲学基础,并被称为“理由”。两者都集中参与维持民主生活形式的可能性。鉴于人们生活的各种各样的“综合学说”,以及世界各地民主政府形式的特殊情况之间的差异,教育必须促进“正义感”公民的发展,足以维持“重叠的共识”,以实现宽容原则和差异的积极利益。结果是3)民主教育的AI设计应不断地关注人类与人类相互作用的可塑性,连通性和韧性,以应对机器的存在,以满足民主价值观,情感,志向和人类能力不断发展的质量的挑战,使民主社会可以使民主社会维持和发展。
感知虚拟对象的空间信息(例如,方向,距离)对于寻求不可思议的虚拟现实(VR)体验的盲人用户至关重要。为了促进盲人用户的VR访问权限,在本文中,我们研究了两种类型的触觉提示(多余的提示和皮肤伸展线索)在传达虚拟物体的空间信息时,当应用于盲人手的背侧时。我们与10个盲人用户进行了一项用户研究,以调查他们如何使用定制的触觉机构在VR中感知静态和移动对象。我们的结果表明,盲人用户可以在接收皮肤拉伸线索时更准确地理解对象的位置和移动,这是对纤维曲折提示的。我们讨论了两种类型的触觉提示的利弊,并以设计建议的设计建议,以实现VR可访问性的未来触觉解决方案。
Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。